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Abstract—The growing prevalence of computationally inten-
sive applications such as autonomous driving and in-vehicle
infotainment places a substantial energy burden on modern
vehicles. To mitigate this challenge, computational offloading
in vehicular edge computing (VEC) has attracted increasing
attention. However, existing offloading solutions for VEC often
face limitations in practicality, slow convergence, or unsatisfac-
tory optimization quality. To overcome these challenges, this
work designs Variational Autoencoder-Enhanced Lévy Differ-
ential Evolution Offloader (VELO), an optimization framework
for task offloading in VEC environments. VELO dynamically
selects between roadside units and cloud servers as offloading
targets, aiming to reduce system energy consumption. The frame-
work incorporates a variational autoencoder for dimensionality
reduction to accelerate inference and integrates a differential
evolution algorithm augmented with a Lévy flight strategy to
improve optimization quality. Experimental results show that
VELO achieves competitive results, effectively lowering system-
level energy consumption while preserving rapid convergence.
VELO offers a promising solution to reduce the computational
load on next-generation vehicle applications and supports the
development of energy-efficient, low-carbon intelligent trans-
portation systems.

Key Words—Vehicular edge computing, task offloading, varia-
tional autoencoder, and energy-efficient optimization.

I. INTRODUCTION

THE evolution of intelligent transportation systems,
driven by computationally intensive applications like

autonomous driving and advanced infotainment, is placing
unprecedented demands on vehicle onboard units (OBUs).
However, these capabilities are fueled by a dramatic increase
in computational workload, imposing a significant energy con-
sumption burden. To manage this workload and provide low-
latency and energy-saving services, computational offloading
in vehicular edge computing (VEC) has emerged as a critical
paradigm.

Research in edge computing computational offloading can
be broadly divided into two main categories: traditional op-
timization and machine learning approaches. Traditional op-
timization methods mathematically model the computation
offloading problem to minimize metrics such as latency or
energy consumption. For instance, Bi et al. [1] employ an
improved hybrid metaheuristic algorithm to address the energy
minimization problem. However, their design still relies on
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a relatively low-dimensional decision space and simplified
energy coefficients, which makes it difficult to capture highly
dynamic vehicular conditions and heterogeneous hardware
characteristics in large-scale VEC. Yuan et al. [2] propose a
novel optimization algorithm, combined with simulation ex-
periments, to solve the problem of minimizing the overall sys-
tem cost, but their framework assumes a static offloading struc-
ture and does not explicitly exploit learned low-dimensional
representations to accelerate search in large task populations.
Liu et al. [3] formulate a mixed-integer optimization problem
for mobility-aware multi-hop task offloading in autonomous
driving scenarios and solve it via a semidefinite relaxation
approach with adaptive adjustment. However, their optimiza-
tion still operates directly in the original high-dimensional
decision space with handcrafted objective terms, which leads
to scalability issues and potential local optima when the
number of tasks and candidate offloading nodes grows. Cheng
et al. [4] employ a matching game and dynamic programming
to reduce VEC task delay and cost in a collaborative edge and
vehicle scenario, but the game-theoretic model is built upon
strong assumptions on network states and rational behaviors,
which may not hold under rapidly fluctuating energy and
channel conditions. Tan et al. [5] utilize convex optimization to
find the optimal offloading mode for minimizing the weighted
sum of overall task response times and communication energy
consumed at vehicles. However, such convex formulations
require carefully crafted problem structures and cannot easily
accommodate nonconvex energy models or high-dimensional,
combinatorial offloading patterns. Overall, these traditional
methods often face practical challenges in high-dimensional
and dynamic VEC scenarios, where strong modeling assump-
tions and direct search in the original space limit convergence
speed.

On the other hand, machine learning approaches are gain-
ing traction as they can better adapt to the complex and
dynamic VEC environment. Deep learning can automatically
extract features to make predictions and better adapt to the
complex environment of VEC [6, 7, 8], but these meth-
ods typically require large labeled datasets and fixed data
distributions, which is difficult to guarantee in time-varying
vehicular networks with evolving energy profiles. To mitigate
the need for manual modeling, deep reinforcement learning
(DRL), which learns through direct environmental interaction,
provides an alternative. There is currently extensive research
on the application of DRL in VEC [9, 10, 11, 12, 13],
leveraging its advantages in automatically extracting features
and adapting to complex, high-dimensional environments for
optimizing offloading strategies. Nevertheless, the “trial-and-
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error” exploration process often leads to long training time,
high online learning cost, and unstable performance when
task distributions or network conditions shift, which hinders
deployment under strict energy and latency constraints. In
contrast, this work proposes an energy-aware computational
offloading framework that leverages a variational autoen-
coder (VAE) to build a smooth latent representation of high-
dimensional offloading decisions and an enhanced differential
evolution (DE) algorithm with an exponentially decaying Lévy
flight to efficiently search in this latent space based solely on
energy feedback, thereby avoiding heavy labeling or costly
DRL training.

Given these problems, this work proposes an energy-
aware computational offloading framework called Variational
Autoencoder-Enhanced Lévy Differential Evolution Offloader
(VELO) for VEC tasks, which leverages a VAE and an
enhanced DE algorithm to boost the performance in opti-
mization. We employ a VAE to robustly handle data uncer-
tainty and generate effective low-dimensional representations.
The core optimization process is driven by a DE algorithm,
enhanced with an exponentially decaying Lévy flight strat-
egy that dynamically balances exploration and exploitation
to escape local optima and fine-tune solutions effectively.
This framework effectively utilizes the powerful processing
capabilities of machine learning models for complex inputs,
while the integration with a heuristic algorithm avoids the
need for labeled datasets or the long “trial-and-error” is-
sues of DRL. Furthermore, the introduction of Lévy flights
effectively mitigates the local optima problem in heuristic
searches. VELO also has significant practical utility, as it
requires fewer prior assumptions, relying solely on energy
consumption for feedback. Experimental results demonstrate
that VELO significantly reduces overall system energy con-
sumption, achieving competitive performance and offering
a viable path toward low-carbon, energy-efficient intelligent
transportation. The main contributions of this work are as
follows.

• We propose VELO, a VAE-enhanced differential evo-
lution framework for energy-aware task offloading in a
three-tier vehicular edge computing architecture, enabling
label-free optimization based solely on energy feedback.

• We formulate an energy minimization model that jointly
captures heterogeneous computation efficiencies and
transmission costs on vehicles, roadside units (RSUs),
and cloud servers under dynamic hardware and network
conditions.

• We develop an exponentially decaying Lévy-flight-based
differential evolution strategy that performs search in the
VAE latent space, and demonstrate through extensive sim-
ulations that VELO achieves lower energy consumption
and faster convergence than state-of-the-art metaheuristics
and autoencoder-assisted evolutionary baselines.

The remainder of this work is organized as follows. Section
II reviews the related work. Section III formulates the en-
ergy minimization problem. Section IV presents the proposed
VELO framework. Section V introduces the experimental
setup, evaluation metrics, baseline algorithms, and perfor-

mance analysis. Section VI concludes this work.

II. RELATED WORK

This section reviews three lines of research closely related to
VEC task offloading: (i) optimization-based offloading strate-
gies, (ii) deep and reinforcement-learning-based approaches,
and (iii) autoencoder-assisted evolutionary optimization.

A. Optimization-based Offloading Strategies

Optimization-based methods constitute a core line of re-
search for task offloading in mobile-edge and VEC systems.
Chai et al. [14] investigate joint multi-task offloading and
resource allocation in satellite-assisted IoT edge networks.
They formulate a coupled optimization problem that captures
both communication and computation constraints and solve
it via an iterative convex-relaxation algorithm to minimize
system delay. However, this formulation assumes relatively
stable channels and a favorable convex structure, which lim-
its its applicability to highly dynamic VEC scenarios with
nonconvex energy–delay characteristics. Focusing on energy-
constrained devices, Jiang et al. [15] propose a joint offload-
ing and resource-allocation framework under strict energy
budgets. The resulting mixed-integer optimization problem is
addressed through a decomposition-based strategy that bal-
ances latency and energy consumption. Despite its effective-
ness, the approach operates in a high-dimensional decision
space and relies on handcrafted decomposition, which may
incur combinatorial complexity and slow convergence as task
scale increases. Li et al. [16] further study computation-
rate maximization in wireless-powered edge computing with
multi-user cooperation. Their model jointly optimizes wireless
power transfer, cooperative scheduling, and binary offloading
decisions using successive convex approximation. Neverthe-
less, its convergence and solution quality depend heavily
on problem-specific convexification and lack adaptability to
rapidly varying energy conditions. From the perspective of
green computing, Yang et al. [17] introduce carbon-aware
task offloading by explicitly incorporating carbon emission
intensity into the optimization objective. It formulates a multi-
objective problem that jointly minimizes latency and carbon
emissions and derives an offloading policy using convex
optimization techniques. This approach, however, assumes ac-
curate knowledge of time-varying carbon intensity and adopts
centralized optimization, which limits scalability in dynamic
vehicular environments. Similarly, Song et al. [18] propose an
environmentally conscious resource-management framework
for edge–cloud systems by integrating energy consumption
and carbon footprint into a unified cost model. It dynamically
shifts workloads toward greener computing nodes but depends
on precise system modeling and does not explicitly address
the dimensionality challenges posed by large-scale task popu-
lations.

Distinct from the aforementioned strategies, VELO adopts
a novel paradigm by directly addressing high-dimensional
offloading decisions. This is achieved by mapping these deci-
sions into a continuous latent space utilizing a VAE, effectively
reducing the dimensionality of the search space. Furthermore,
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VELO executes a global-local evolutionary search guided
exclusively by energy feedback, thereby circumventing the
restrictive requirements of model convexity or the necessity
for a closed-form analytical solution.

B. Deep Reinforcement Learning-based Task Offloading

Deep learning has been applied to infer optimal offloading
strategies in dynamic vehicular environments. Deep neural
networks extract contextual features from VEC observations
for improved decision making [19]. However, such models
typically rely on large-scale labeled datasets and may overfit to
specific traffic and network patterns, limiting their robustness
when the underlying environment or energy profile changes.
To mitigate the need for labeled samples, DRL approaches
have been widely investigated [20]. These methods exhibit
strong adaptability under dynamic network conditions by
learning policies through interaction. However, DRL-based of-
floading schemes generally require extensive “trial-and-error”
exploration and incur high training overhead, especially in
high-dimensional state-action spaces with numerous tasks and
heterogeneous servers. Moreover, the learned policies can be
sensitive to distribution shifts and need to be retrained or fine-
tuned when the task distribution or network conditions change,
which further increases deployment cost. These characteristics
make DRL solutions difficult to deploy in scenarios where
rapid adaptation, limited training time, or stable energy-aware
performance is required.

In contrast, VELO avoids expensive DRL exploration by
conducting evolutionary search directly in a VAE-learned
latent space of offloading decisions. Specifically, VAE cap-
tures the intrinsic structure of feasible offloading patterns
and enables a compact, low-dimensional search space, which
significantly improves optimization efficiency compared with
conventional evolutionary methods operating in the origi-
nal decision space. In addition, compared with traditional
heuristic or metaheuristic optimization, the latent-space-guided
evolution provides better scalability and faster convergence
when task scale or system configuration changes. VELO only
relies on scalar energy feedback, thereby eliminating the need
for labeled datasets or long online training phases, and its
population-based optimization mechanism naturally adapts to
varying task scales and fluctuating energy coefficients.

C. Autoencoder-Assisted Evolutionary Optimization

Autoencoder-assisted evolutionary optimization has gained
increasing traction as a technique for addressing high-
dimensional or computationally expensive decision-making
problems. Specifically, bi-population cooperative evolution-
ary strategies with embedded autoencoders demonstrate ef-
fectiveness in compressing search spaces to achieve more
efficient optimization [21]. However, standard autoencoders
within these frameworks often generate latent spaces lack-
ing explicit probabilistic regularization, which can result in
irregular or partially discontinuous structures that impede
stable population-based search. Furthermore, Cui et al. [22]
propose an autoencoder-based surrogate-assisted evolutionary

algorithm, achieving improved performance for complex op-
timization tasks by combining dimensionality reduction and
surrogate modeling. Nevertheless, their method is tailored for
generic expensive optimization rather than for energy-aware
VEC offloading, and the surrogate construction inherently
introduces additional modeling and tuning overhead. In ad-
dition, non-variational autoencoders may still furnish latent
representations that lack sufficient smoothness for fine-grained
evolutionary refinement.

To overcome these limitations, VELO incorporates a VAE
to construct a continuous and structured latent space, in
which offloading decisions can be represented as smooth,
low-dimensional vectors. This latent space is coupled with
an enhanced DE mechanism equipped with an exponentially
decaying Lévy flight strategy to balance global exploration
and local refinement over different optimization phases. In this
way, VELO inherits the advantages of autoencoder-assisted
optimization while explicitly addressing the latent-space qual-
ity and convergence issues that appear in standard autoencoder
(AE)-based evolutionary methods.

III. PROBLEM PRESENTATION

TABLE I Nomenclature for the Problem Formulation

Symbol Description

𝑁 Total number of tasks to be processed.
𝑎𝑖,0, 𝑎𝑖,1, 𝑎𝑖,2 Binary decision for task 𝑖, indicating execution

on the vehicle, edge, or cloud, respectively.
𝐶𝑖 Computational workload of task 𝑖.
𝐷𝑖 Data size of task 𝑖 for transmission.
𝜂v, 𝜂e, 𝜂c Energy consumption per CPU cycle on the ve-

hicle, edge, and cloud, respectively.
𝜖e Energy consumption for edge transmission.
𝜖c Energy consumption for cloud transmission.

This work considers a three-tier VEC architecture, as illus-
trated in Fig. 1. The system comprises three main components:
the vehicle’s OBUs, RSUs, and a remote cloud server. It is
assumed that vehicles generate a series of computational tasks
that are not required to be executed locally, thereby making
them suitable candidates for offloading. Each task is treated as
an indivisible processing unit and must be executed entirely
on one of the three tiers, i.e., the OBU, an RSU, or the cloud
server [23, 24]. This non-partial task offloading assumption
is adopted to balance modeling realism and computational
tractability in highly dynamic vehicular environments, where
task partitioning may introduce additional overhead due to
synchronization, intermediate data exchange, and coordination
under time-varying network conditions. The key premise is
that RSUs and cloud servers are equipped with more advanced
and energy-efficient computing architectures compared to the
OBUs. As a result, executing tasks on these remote servers can
lead to significantly lower computational energy consumption.
This gives rise to an optimization problem: the energy cost
incurred by transmitting a task to a remote server must be
balanced against the energy savings achieved through more
efficient remote computation. The objective is to determine
the optimal execution location for each task to minimize the
total energy expenditure. The main system parameters are
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summarized in Table I. We note that extending the proposed
framework to support partial or split task offloading by de-
composing tasks into finer-grained components is a promising
direction for future work.

OBUs

Road Side Unit

Cloud Server

Cloud transmission consumption

Edge Layer

Edge transmission consumption

Cloud Layer

Vehicles

Fig. 1. Architecture of Vehicular Edge Computing.

To formulate this objective, we represent the location for
tasks using binary decision vectors. For each task 𝑖, the
location is a𝑖 = {𝑎𝑖,0, 𝑎𝑖,1, 𝑎𝑖,2}, where each element corre-
sponds to a possible execution location. We analyze a full
offloading scenario, i.e., a task can only be executed at a single
location. Thus, the constraint

∑2
𝑗=0 𝑎𝑖, 𝑗=1 must be satisfied,

with 𝑎𝑖, 𝑗∈{0, 1}. If the task is executed locally (𝑎𝑖,0=1), the
energy consumed is solely for computation on the OBU.
Conversely, if the task is offloaded (𝑎𝑖,1=1 or 𝑎𝑖,2=1), the
energy is the sum of the transmission energy from the vehicle
and the computational energy at the designated remote server.
The total energy consumption 𝐸𝑡 is the energy consumptions
of all tasks, i.e.,

𝐸𝑡 =

𝑁∑︁
𝑖=1

𝐸𝑖 , (1)

where 𝐸𝑖 is the energy consumption for executing task 𝑖.
The energy consumption for an individual task 𝑖 is com-

posed of computational energy, determined by the 𝐶𝑖 and 𝜂,
and additional transmission energy, determined by the 𝐷𝑖 and
𝜖 . In this work, we assume that the RSU and cloud servers
have sufficient computational capacity to execute offloaded
tasks without explicit resource contention, and thus server-side
capacity constraints are not modeled in the energy formulation.
This assumption is adopted to maintain analytical clarity and
to focus on the energy-efficiency trade-off in highly dynamic
vehicular environments. Considering the dynamic nature of the
real-world environment, the energy efficiency coefficients 𝜂

and 𝜖 are not treated as fixed constants. In our implementation,
their values are modeled as random numbers drawn from
a uniform distribution within a predefined range, reflecting
fluctuations in hardware performance and network conditions.

The energy consumed when the task is executed locally on
the vehicle is defined as 𝐸𝑖,v, i.e.,

𝐸𝑖,v = 𝐶𝑖 · 𝜂v. (2)

𝐸𝑖,e denotes the energy consumption for offloading to and
executing on the RSU, including both transmission and com-
putation costs, i.e.,

𝐸𝑖,e = 𝐷𝑖 · 𝜖e + 𝐶𝑖 · 𝜂e. (3)

Similarly, the energy for offloading to and executing on the
cloud server is calculated as:

𝐸𝑖,c = 𝐷𝑖 · 𝜖c + 𝐶𝑖 · 𝜂c. (4)

Based on the binary decision vector a𝑖 = {𝑎𝑖,0, 𝑎𝑖,1, 𝑎𝑖,2},
the total energy consumption for task 𝑖 is formulated as a
piecewise function:

𝐸𝑖 =


𝐸𝑖,v, if 𝑎𝑖,0 = 1,
𝐸𝑖,e, if 𝑎𝑖,1 = 1,
𝐸𝑖,c, if 𝑎𝑖,2 = 1.

(5)

Due to hardware differences, the different energy efficien-
cies of the vehicle, edge, and cloud tiers are captured by the
distinct range of 𝜂 and 𝜖 . The objective function is to minimize
the sum of energy for all tasks:

min 𝐸𝑡 = min
𝑁∑︁
𝑖=1

𝐸𝑖 . (6)

IV. PROPOSED METHODOLOGY

A. VAE for Dimensionality Reduction

The decision variables for each tasks including 𝑎𝑖,0, 𝑎𝑖,1,
and 𝑎𝑖,2. This creates a high-dimensional problem space when
the number of task grows. Directly optimizing within this
high-dimensional space hinders the ability to find high-quality
solutions. Therefore, dimensionality reduction is a critical
prerequisite for efficient optimization. While existing research
has utilized standard AE for this purpose [22], it often produce
a latent space that is irregular or discontinuous. This poor
latent space quality can trap optimization algorithms.

To overcome this limitation, we employ a VAE to achieve a
more robust and higher-quality dimensionality reduction. The
VAE is a generative model that learns a structured, continuous
latent representation of the input data. It consists of two
main components: a probabilistic encoder and a decoder. The
encoder, 𝑞(𝑧 |𝑥), maps an input data point 𝑥 to a probability
distribution, typically a multivariate Gaussian with a diagonal
covariance matrix. It outputs this distribution’s mean 𝜇 and
the log-variance log(𝜎2). Then, the latent vector 𝑧 is obtained
by sampling from this distribution:

𝑧 ∼ 𝑞(𝑧 |𝑥) = N(𝑧; 𝜇, 𝜎2𝐼), (7)

where N denotes the multivariate Gaussian distribution and 𝐼

is the identity matrix.
To enable gradient-based optimization through backpropa-

gation, the VAE utilizes the reparameterization trick. Instead
of directly sampling 𝑧 from the distribution, the model samples
a random noise vector 𝜖 from a standard normal distribution
N(0, 𝐼) and then compute the latent vector 𝑧 as:

𝑧 = 𝜇 + 𝜎 ⊙ 𝜖, (8)
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where ⊙ denotes element-wise multiplication. The decoder,
𝑝(𝑥 |𝑧), then takes this latent vector 𝑧 and attempts to recon-
struct the original input data, producing 𝑥.

In this paper’s VAE network implementation, both the
encoder and decoder employ two-layer feedforward networks.
Specifically, the encoder first encodes the input to the 𝐷1
dimension, and then further encodes it into the 𝐷0 latent space.
Conversely, the decoder operates in the reverse order, first
decoding from the 𝐷0 latent space to the 𝐷1 dimension before
reconstructing the original input. This hierarchical structure
facilitates the network’s ability to learn more complex feature
representations. Notably, only in the inference stage, each
row in the decoder’s output matrix is processed as a one-hot
encoded vector to align with the problem’s requirements.

The VAE is trained by optimizing a loss function composed
of two terms: a reconstruction loss 𝐿𝑅 and the kullback-
leibler (KL) divergence 𝐿𝐾𝐿 . The total loss corresponds to
the negative Evidence Lower Bound, i.e.,

𝐿𝑉𝐴𝐸 = 𝐿𝑅 + 𝐿𝐾𝐿 , (9)

where 𝐿𝑅 measures the difference between the original input
𝑥 and the decoder’s output 𝑥, and we use the mean squared
error for this purpose. 𝐿𝐾𝐿 is the KL divergence between the
encoder’s learned distribution 𝑞(𝑧 |𝑥) and a prior distribution
over the latent variables 𝑝(𝑧). It is typically a standard normal
distribution N(0, 𝐼).

The KL divergence acts as a regularizer, forcing the learned
latent distributions to be close to the prior. In that case, it
ensures that the latent space is well-structured and continuous.
This property is the primary advantage of the VAE for our
task, which is more suitable for subsequent optimization al-
gorithms. The smooth structure of the latent space enables the
Differential Evolution algorithm to navigate more effectively,
allowing it to make small yet meaningful steps toward a global
optimum while avoiding the fragmented regions that often
hinder standard AE-based representations.

B. Exponentially Decaying Lévy Flight for Enhanced DE

The standard DE algorithm is a widely adopted population-
based optimization method that iteratively improves candi-
date solutions through mutation, crossover, and selection. Its
mutation mechanism, typically based on a random strategy,
generates a mutant vector 𝑉𝑖 by perturbing a base vector with
the scaled difference between two other randomly selected
vectors from the population:

𝑉𝑖 = 𝑋𝑟1 + 𝐹 · (𝑋𝑟2 − 𝑋𝑟3), (10)

where 𝑋𝑟1, 𝑋𝑟2, and 𝑋𝑟3 are three distinct vectors randomly
selected from the current population and 𝑟1≠𝑟2≠𝑟3. 𝐹 is the
scaling factor that controls the amplification of the differential
variation between vectors.

After the mutation step, crossover and selection are ap-
plied to produce the next generation of candidate solutions.
However, standard DE is prone to premature convergence,
particularly in complex search spaces. To enhance its global
search capability, we incorporate the Lévy flight mechanism,
which is a random walk strategy that employs occasional large

jumps to help the algorithm escape local optima. The step size
𝑠 is generated as:

𝑠 =
𝑢

|𝑣 |1/𝛽
, (11)

where 𝑢∼N(0, 𝜎2
𝑢) and 𝑣∼N(0, 𝜎2

𝑣 ) are drawn from normal
distributions, and 𝛽 is a control parameter. We integrate this
into an enhanced mutation strategy where the mutant vector 𝑉𝑖
is generated by applying a Lévy flight to the current position:

𝑉𝑖 = 𝑋𝑖 + 𝛼 · 𝑠 · sgn(𝑟1 − 0.5), (12)

where 𝛼 is the step scaling factor, 𝑟1 is a random number
drawn uniformly from the interval [0, 1], and sgn(·) is the
signum function, which returns +1 for positive inputs and −1
for negative ones, determining the direction of the perturba-
tion. This new mutant then undergoes the standard crossover
and selection steps.

While Lévy flight is effective for early-stage exploration, its
tendency to produce large steps can hinder fine-tuning in the
later stages of optimization. To overcome this limitation, we
propose a hybrid strategy that combines standard DE search
with a Lévy flight mechanism whose influence decays expo-
nentially over time. Specifically, we introduce an iteration-
dependent probability 𝑝𝑙 (𝑛) that controls whether Lévy-based
mutation is applied at iteration 𝑛. This probability gradually
decreases as the algorithm progresses, allowing the search to
shift from global exploration to local exploitation:

𝑝𝑙 (𝑛) = 𝛼𝑙 · 𝑒−𝛽𝑙𝑘𝑛, (13)

where 𝑘=𝑛/𝑛max, and the parameters 𝛼𝑙 and 𝛽𝑙 control the
decay rate. It enables a seamless transition from global ex-
ploration to local exploitation. Initially, a high probability of
invoking Lévy flights allows the algorithm to broadly explore
the search space. As the search progresses, this probability
rapidly decays, causing the algorithm to shift to standard
DE operations that excel at local fine-tuning. This creates
a dynamic balance that fosters both rapid exploration and
efficient convergence.

C. VELO Optimization Framework

By integrating the VAE with this enhanced DE algorithm,
an efficient optimization framework VELO is formed in Algo-
rithm 1, which operates in two phases. First, the VAE is trained
offline on a sufficient dataset of randomly generated offloading
schemes, allowing it to learn a robust, low-dimensional latent
representation of the high-dimensional decision space.

Once the VAE is trained, the main optimization task begins
with a randomly initialized population of offloading solutions
for the algorithm. The core optimization loop proceeds as
follows: for any given solution vector 𝑥 from the DE pop-
ulation, it is first encoded into its latent representation 𝑧 using
the VAE’s encoder. Then the algorithm performs its search
operations directly within this continuous and structured latent
space. A new trial individual in the latent space 𝑧′ is generated
via the hybrid mutation process:

𝑧′ =

{
𝑧 + 𝛼 · 𝑠 · sgn(𝑟1 − 0.5) if 𝑟2 < 𝑝𝑙 (𝑛),
𝑧 + 𝐹 · (𝑧𝑟1 − 𝑧𝑟2) otherwise.

(14)
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Algorithm 1 VAE-Enhanced DE with Exponentially Decaying
Lévy Flight (VELO)

Offline Training: Train VAE Encoder 𝐸 (·) and Decoder
𝐷 (·) on a sufficient set of samples. Initialize: Popula-
tion 𝑃𝑥={𝑥1, 𝑥2, . . . , 𝑥𝑝}, max iterations 𝑛max, parameters
𝛼𝑙 , 𝛽𝑙 , 𝐹, 𝛼. Create latent population 𝑃𝑧 by encoding each
solution: 𝑧𝑖 ← 𝐸 (𝑥𝑖) for all 𝑥𝑖 ∈ 𝑃𝑥 . 𝑛 = 1 to 𝑛max
𝑘 ← 𝑛/𝑛max. 𝑝𝑙 ← 𝛼𝑙 · exp(−𝛽𝑙 · 𝑘 · 𝑛). each individual
(𝑧𝑖 , 𝑥𝑖) in populations (𝑃𝑧 , 𝑃𝑥) Generate random number
𝑟1 ∈ [0, 1]. 𝑟1 < 𝑝𝑙 Generate Lévy step 𝑠. Generate ran-
dom number 𝑟2 ∈ [0, 1]. 𝑣𝑧 ← 𝑧𝑖+𝛼·𝑠·sgn(𝑟2−0.5). Select
distinct 𝑧𝑟1, 𝑧𝑟2 from 𝑃𝑧 . 𝑣𝑧 ← 𝑧𝑖+𝐹 · (𝑧𝑟1− 𝑧𝑟2). Perform
crossover between 𝑧𝑖 and 𝑣𝑧 to create 𝑢𝑧 . 𝑥trial ← 𝐷 (𝑢𝑧).
𝑓 (𝑥trial) is better than 𝑓 (𝑥𝑖) 𝑧𝑖 ← 𝑢𝑧 . 𝑥𝑖 ← 𝑥trial. Return:
The best individual found in 𝑃𝑥 .

The choice between these mutation strategies is governed by
comparing a random number 𝑟2∈[0, 1] with the probability
𝑝𝑙 (𝑛). 𝑧𝑟1 and 𝑧𝑟2 are two other randomly selected different
individuals from the encoded population. This mutant vector
𝑧′ then undergoes a crossover operation with the original latent
vector 𝑧 to create the final trial vector. This trial vector is then
decoded back into the original high-dimensional solution space
using the VAE’s decoder, yielding a new candidate solution
𝑥′=Decoder(𝑧′). Finally, this new solution 𝑥′ is evaluated
using 𝐸𝑡 to determine its fitness. This entire process enables
a rapid and effective search for optimal offloading strategies.

D. Convergence Analysis of VELO

VELO performs stochastic search in the latent space and
accepts improvements through a greedy selection rule. Let
X ⊂ R𝑑𝑥 denote the feasible solution set in the original
decision space and assume X is nonempty and compact. Let
𝑓 : X → R be the objective function (fitness) and assume 𝑓

is bounded below on X, i.e., inf𝑥∈X 𝑓 (𝑥) > −∞. Denote by
𝑥
(𝑛)
best the best individual in the population at iteration 𝑛. Since

VELO employs elitist selection, 𝑓 (𝑥 (𝑛+1)
best ) ≤ 𝑓 (𝑥 (𝑛)best) holds for

all 𝑛, implying that { 𝑓 (𝑥 (𝑛)best)}𝑛≥0 is a non-increasing sequence.
Together with the lower-boundedness of 𝑓 , it follows that
{ 𝑓 (𝑥 (𝑛)best)} converges to a finite limit value. To characterize
global convergence in probability, consider the latent space
Z ⊂ R𝑑𝑧 induced by the VAE encoder–decoder pair. Assume
the decoder 𝐷 (·) is continuous on Z and maps any latent
vector to a feasible solution, i.e., 𝐷 (𝑧) ∈ X for all 𝑧 ∈ Z.
Moreover, assume the hybrid mutation in VELO satisfies an
irreducibility condition: for any 𝑧 ∈ Z and any open ball
B𝜖 (𝑧) ⊂ Z, there exists a constant 𝛿(𝜖) > 0 such that the
probability of generating a trial vector 𝑢𝑧 ∈ B𝜖 (𝑧) from 𝑧

in one iteration is at least 𝛿(𝜖). This condition is standard
for stochastic evolutionary search and is ensured when (i) the
crossover rate is strictly between 0 and 1, and (ii) the Lévy
flight perturbation is applied with a strictly positive probability
𝑝𝑙 (𝑛) for infinitely many iterations.

Let X★ = arg min𝑥∈X 𝑓 (𝑥) be the set of global optima and
let N𝜖 (X★) denote its 𝜖-neighborhood. Under the above as-
sumptions, VELO induces a Markov process over populations

with a nonzero probability of visiting any neighborhood of
X★. By the irreducibility of the latent-space sampling and
the greedy acceptance of improvements, the probability that
the best-so-far solution enters N𝜖 (X★) approaches one as
𝑛max →∞, i.e.,

lim
𝑛max→∞

Pr
(
𝑥
(𝑛max )
best ∈ N𝜖 (X★)

)
= 1, ∀ 𝜖 > 0. (15)

Therefore, VELO is globally convergent in probability in the
sense that, given unlimited iterations, it can reach an arbitrarily
small neighborhood of the global optimum with probability
one, while the elitist selection guarantees monotonic improve-
ment of the best objective value across iterations.

E. Computational Complexity of VELO

From a computational perspective, VELO framework con-
sists of an offline representation learning stage and an online
evolutionary optimization stage. The offline training of the
VAE incurs a one-time computational cost of O(𝐸vae𝑁𝐶vae),
where 𝑁 and 𝐸vae denote the size of the training dataset and
the number of training epochs, respectively. During the online
optimization stage, VELO evolves a population of size 𝑝 over
𝑛max iterations. For each individual, the dominant operations
include latent-space mutation and crossover with complexity
O(𝑑𝑧), VAE decoding with cost O(𝐶𝐷), and fitness evaluation
with cost O(𝐶 𝑓 ). As a result, the overall online computational
complexity of VELO is O

(
𝑛max 𝑝 (𝑑𝑧 + 𝐶𝐷 + 𝐶 𝑓 )

)
. In prac-

tical computation offloading scenarios, the fitness evaluation
typically dominates the computational burden (𝐶 𝑓 ≫ 𝑑𝑧 , 𝐶𝐷),
implying that the effective complexity is primarily determined
by the number of fitness evaluations, i.e., O(𝑛max 𝑝 𝐶 𝑓 ), while
the latent-space optimization significantly reduces the algo-
rithmic overhead compared with direct search in the original
high-dimensional decision space.

V. EXPERIMENTAL EVALUATION

A. Simulation Setup and Task Generation

The performance of the proposed VELO framework is
evaluated in a simulated three-tier VEC environment. Vehicles
generate computational tasks that can be executed locally
on the OBU, offloaded to a RSU, or offloaded to a remote
cloud server. The objective of all compared algorithms is
to determine the optimal execution location of each task to
minimize the total energy consumption defined in Section III.
Table II summarizes the simulation settings. The number of
tasks 𝑁 varies in {50, 100, 150, 200} to evaluate scalability.
For each task 𝑖, the computational workload 𝐶𝑖 and data size
𝐷𝑖 are randomly sampled from predefined intervals to emulate
heterogeneous VEC services. The energy coefficients 𝜂v, 𝜂e,
𝜂c, 𝜖e, and 𝜖c follow uniform sampling to represent fluctuating
hardware efficiency and dynamic network conditions. To par-
tially reflect real-world uncertainties, the randomized sampling
of task parameters and energy coefficients implicitly captures
the effects of network fluctuations and heterogeneous resource
conditions across different execution layers. Nevertheless, the
current simulation focuses on static task instances and does not
explicitly model time-varying network bandwidth, server-side



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 4, DECEMBER 2025 180

resource contention, or inter-task dependency relationships.
For each task scale, all algorithms operate on the same set
of generated task instances to ensure fair comparison. Results
are reported as averaged values over multiple independent runs
with distinct random initializations.

TABLE II Simulation Parameter Settings

Category Parameter Value

Problem Scale 𝑁 [50, 100, 150, 200]

Task Attributes 𝐶𝑖 rand(128, 1024) K-cycles
𝐷𝑖 rand(1024, 65536) K-bits

Energy Coefficients 𝜂v rand(10−7, 5 × 10−5)
J/cycle

𝜂e rand(10−8, 5 × 10−6)
J/cycle

𝜂c rand(10−9, 5 × 10−7)
J/cycle

𝜖e rand(10−11, 10−10) J/bit
𝜖c rand(10−10, 10−9) J/bit

Heuristic Algorithm 𝛼𝑙 0.3
𝛽𝑙 7
𝑛max 500
Population size 50
Crossover rate 0.9

VAE Network 𝐷𝑖𝑚0 25
𝐷𝑖𝑚1 64
Activation ReLU
Optimizer Adam (lr=10−3)
Batch size 128
Epochs 200

* rand(a,b) denotes uniform sampling from interval [𝑎, 𝑏].

B. Evaluation Metrics

Three metrics are used to comprehensively evaluate the
quality and practicality of task offloading strategies:
• Total energy consumption:

𝐸𝑡 =

𝑁∑︁
𝑖=1

𝐸𝑖 , (16)

which serves as the primary optimization objective.
• Convergence performance: the evolution of 𝐸𝑡 over

optimization iterations, reflecting convergence speed and
stability of the algorithm.

• Runtime overhead: the wall-clock computational time
under different task scales, indicating algorithmic effi-
ciency and deployment feasibility.

C. Baselines and VELO Variants

VELO is compared against four widely adopted metaheuris-
tic and evolutionary optimization methods:
• STORA [25, 26]: A self-adaptive teaching-learning-based

optimizer enhanced with RBF surrogates and sparse
autoencoders, which achieves strong performance on
generic high-dimensional benchmarks.

• GWO [27, 28]: Grey Wolf Optimizer, modeling hierar-
chical hunting mechanisms. It features simple parameter-
ization and low computational overhead. Its direct search
in the original high-dimensional decision space tends to

yield slower convergence and weaker robustness for large
task populations.

• IVY [29]: An ivy-growth-inspired optimizer balancing
exploration and exploitation, whose plant-growth-inspired
dynamics improve global search but lack mechanisms for
dimensionality reduction or latent-space guidance.

• SAEO [22]: A surrogate-assisted autoencoder-embedded
evolutionary algorithm for high-dimensional expensive
optimization, leveraging autoencoders and surrogates.

All baseline algorithms are adapted to the same discrete,
ternary task offloading decision space as VELO, where each
task is assigned to one of three execution locations: the vehicle
OBU, an RSU, or the remote cloud server. For baselines
originally designed for continuous or high-dimensional search
spaces, a unified discretization and action-mapping strategy
is employed to map their candidate solutions to valid ternary
offloading decisions, ensuring a level playing field for com-
parison.

To verify the contributions of VELO components, three
ablation variants are evaluated:
• VELO(AE): replaces VAE with a standard autoencoder.
• VELO(DE): removes Lévy flight and performs standard

DE search in the latent space.
• VELO(LF): applies step distribution without an expo-

nential decay component.
All methods use comparable population sizes and identical

maximum iteration budgets to ensure fairness. In addition, all
methods are evaluated on identical task instances and repeated
over multiple independent runs with different random seeds to
account for stochastic variability.

D. Results and Discussion

Fig. 2. Convergence performance comparison (𝑁=100).

Fig. 2 shows that algorithms using latent-space dimension-
ality reduction (SAEO, STORA, and VELO) converge signifi-
cantly faster and achieve lower final energy than methods with-
out dimensionality reduction. VELO reaches approximately 48
J within the first 30 iterations and maintains stable convergence
afterward.

Fig. 3 evaluates scalability. VELO consistently yields the
lowest energy consumption across all task sizes, and its slower
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Fig. 3. Energy consumption vs. number of tasks.

growth slope indicates stronger robustness under increasing
computational demand, making it suitable for large-scale VEC
environments.

Fig. 4. Time cost analysis.

Fig. 4 presents runtime overhead. Although GWO and
IVY incur lower computational cost, their inferior energy
optimization limits practical applicability. VELO achieves a
better balance between efficiency and solution quality and out-
performs both SAEO and VELO(AE), confirming the benefit

Fig. 5. Ablation experiment results.

of using VAE to obtain smoother latent representations.
The ablation comparison in Fig. 5 shows that VELO(AE)

converges to a higher energy level (around 54 J), illustrating
the benefit of the structured latent space obtained via VAE.
VELO(DE) and VELO(LF) exhibit degraded performance,
indicating that the exponentially decaying Lévy flight mech-
anism is essential for balancing global search and local re-
finement during different optimization phases. These findings
confirm that both VAE-based dimensionality reduction and
the enhanced DE strategy are critical to VELO’s optimization
capability.

VI. CONCLUSIONS

This work proposes a novel, energy-aware computational of-
floading framework named Variational Autoencoder-Enhanced
Lévy Differential Evolution Offloader (VELO). VELO in-
tegrates a variational autoencoder (VAE) for robust dimen-
sionality reduction and an enhanced differential evolution
algorithm. VAE effectively transforms the high-dimensional
offloading problem into a structured, continuous latent space.
DE algorithm enhanced with an exponentially decaying Lévy
flight strategy intelligently balances global exploration and
local fine-tuning to rapidly converge on high-quality solutions.
Experimental results confirm that VELO significantly reduces
the overall energy footprint of vehicular edge computing oper-
ations. This work presents a promising solution for alleviating
the operational burden of vehicle devices and contributes to
the broader goal of developing low-carbon, energy-efficient
intelligent transportation systems. For future work, we plan to
enhance the model’s realism by explicitly incorporating finite
computational capacities of edge and cloud servers, so that
offloading decisions are optimized under practical resource
constraints. This can be achieved by introducing server-side
capacity limits and load-aware feasibility constraints into the
optimization formulation. Moreover, dynamic network factors
such as time-varying bandwidth and stochastic traffic patterns
will be integrated to capture non-stationary vehicular environ-
ments. We also plan to extend the current binary offloading
scheme to support partial and split task offloading through
fine-grained task decomposition, enabling better support for
latency-sensitive and computation-intensive applications.
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