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Curating Dataset Pipelines to Train Medical
Chatbots on Early Sepsis Detection
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Abstract—Sepsis is a critical medical condition that arises
when the body’s response to infection causes life-threatening
organ dysfunction. Despite increasing awareness and the use of
protocol-driven management strategies, early diagnosis remains
a persistent challenge in clinical practice, especially in high-
pressure settings such as emergency departments and ICUs.
Nurses, as first responders, are crucial in identifying early
signs, but often work under cognitive overload and ambiguity of
the protocol. Large language models (LLMs) represent frontier
neural network techniques that use self-supervised learning
algorithms to process and understand human languages or text.
This work focuses on building a robust data gathering pipeline
in order to ultimately create an interactive clinical chatbot fine-
tuned on sepsis-specific knowledge. The pipeline consists of a
three-step process, namely lexical analysis, semantic analysis,
and Q&A quality evaluation, that utilizes artificial intelligence
to collect training data in novel ways. It provides a feasible
and cutting-edge framework for LLM-based chatbot design and
development.

Key Words—Sepsis, large language models, medical chatbot,
lexical analysis, semantical analysis, LLM as a judge.

I. INTRODUCTION

SEPSIS is a life-threatening condition that requires early
detection and intervention to improve patient outcomes.

Despite advances in medical protocols, early diagnosis remains
challenging, particularly in high-stress environments such as
emergency departments and ICUs. Nurses, who are often the
first to interact with patients, play a crucial role in identifying
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early signs of sepsis but face significant cognitive load and
ambiguity in protocols.

With the rapid development of artificial intelligence and data
science [1, 2], especially Large Language Models (LLMs),
new opportunities have emerged for the modernization and
transmission of the diagnosis of medical problems [3]. With
its powerful semantic understanding and knowledge reasoning
capabilities, an LLM model could theoretically reduce the dif-
ficulty of understanding sepsis conditions, improve diagnostic
decision-making efficiency, and thus effectively alleviate the
challenges posed by long training cycles and the insufficient
number of trained professionals. However, several major bar-
riers block the effective application of LLMs in the sepsis
domain.

These barriers include the scarcity of high-quality, curated
sepsis-specific question–answer datasets, the risk of halluci-
nated or unsafe medical outputs, challenges in ensuring clinical
safety and guideline adherence, high computational costs as-
sociated with large-scale models, and the cognitive complexity
of sepsis presentations that demand precise, context-aware
reasoning. Without addressing these limitations at the data and
evaluation level, LLM-based systems risk producing unreliable
or clinically inappropriate responses.

This study aims to address these challenges by providing a
reliable, AI-driven tool that can assist healthcare professionals
in real-time decision making. Using compact, yet powerful
transformer models like Gemma 2B-IT, our chatbot aims to
deliver accurate, clinically relevant responses to questions
related to sepsis.

Artificial intelligence (AI) offers a promising avenue to
support clinical decision-making in this context [4, 5, 6].
Large language models (LLMs), in particular, have demon-
strated strong potential for synthesizing medical knowledge,
answering clinician queries, and assisting with information
retrieval. However, most existing models, such as BioGPT or
Med-PaLM, are extremely resource-intensive, limiting their
practicality for deployment in settings where lightweight,
responsive systems are needed. Moreover, many prior efforts
focus on demonstrating model performance while giving less
attention to the foundational step of curating reliable datasets
[7]. Without rigorous data pipelines, even the most advanced
models risk producing clinically irrelevant or unsafe outputs.

Our work addresses this gap by focusing on the develop-
ment of a robust data gathering and preprocessing pipeline
tailored specifically for sepsis-related knowledge. Rather than
beginning with model fine-tuning, we prioritize the careful cu-
ration of a structured dataset sourced from medical literature.
By implementing a multi-step pipeline consisting of lexical
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analysis, semantic analysis, and LLM-as-a-Judge, we establish
a reproducible workflow that emphasizes data quality, safety,
and clinical relevance.

The main contributions of the work are as follows.
(1) A three-step data curation pipeline is developed that

utilizes advanced large language models to compile a data set
to train a chatbot.

(2) Lexical Analysis: The first step in our pipeline during
which question-answer pairs are analyzed based on lexical
similarity, and pairs that are deemed too similar to others in
the set are discarded.

(3) Semantic Analysis: In this step, the question-answer
pairs that remain after being passed through the lexical analy-
sis filter are analyzed on the basis of semantic similarity. Once
again, we remove pairs deemed similar to others in the set.

(4) Q&A Quality Assessment: In the last step in our
pipeline, we use large language models to evaluate the remain-
ing question-answer pairs (LLM as a judge) based on metrics
such as quality, accuracy, and clinical relevance.

II. RELATED WORK

Previous research has explored the use of large language
models in healthcare, such as BioGPT [8] and Med-PaLM [9].
However, these models often require substantial computational
resources, limiting their deployment in resource-constrained
settings. Recent advancements in LoRA-based fine-tuning
(e.g., QLoRA [10]) and LLM-as-a-Judge methodologies (e.g.,
KoalaEval) have paved the way for more efficient, clinically
viable workflows. Our study builds on these innovations to cre-
ate a specialized, deployable solution for sepsis management
using lightweight models. In contrast to these large, resource-
intensive systems, we present a lightweight and reproducible
dataset curation pipeline that runs on accessible hardware and
filters redundancy and safety risks before fine-tuning.

A. Sepsis Prediction

Early and precise recognition of sepsis is critical as delayed
treatment increases the mortality rate dramatically. Srimedha
et al. proposed a classifier in [11] that can accurately predict
sepsis up to six hours before the disease is clinically diag-
nosed. The predictor utilizes a patient’s electronic medical
records, demographics, and vital signs. In [12], Lyra et al.
optimized and evaluated four prediction models with different
architectural concepts. Two public datasets containing clinical
data from adults and neonates were used for training. In [13],
Dai et al. uses a deep reinforcement learning framework for
solving early prediction of sepsis. To improve the prediction
performance of sepsis, Apalak et al. [14] used conditional
recurrent adversarial networks, which is trained with the
output of a conditional GAN and evaluated on an unseen
dataset. The same authors present an early sepsis detection
algorithm utilizing the Medical Information Mart for Intensive
Care (MIMIC-III) Clinical Dataset and MIMIC-Waveform
Database. The algorithm utilizes ECG signals, as part of a
patient monitoring system for individuals in ICU [15]. In [16],
a multilayer machine learning approach is presented to analyze
continuous high-frequency data, which has the ability to detect

early patients at risk of sepsis. Most recently, Giordano et al.
introduces SepAl, an energy-efficient and lightweight neural
network, using only data from low-power wearable sensors
and body temperature sensors to deliver sepsis alerts in real
time [17].

B. LLMs in Healthcare

In [3], AcuGPT-agent, a novel intelligent system powered by
a domain-specific large language model (LLM) designed for
acupuncture-based infertility treatment is presented. It works
as a chatbot. A similar work is reported by Griot et al [18],
which presents a secure, fully onpremises, GDPR-compliant
LLM chatbot integrated into the Epic EHR system at a Eu-
ropean university hospital. Wu et al. introduce a novel LLM-
and applied it to the diagnosis of brain tumors in healthcare
informatics [19]. In [20], a multimodal medical chatbot that
leverages Gemini-2.0-Flash Model alongside a novel RAG
architecture to support preliminary medical diagnosis and
recommendations is presented. The system integrates textual
prompt analysis and medical image interpretation. Liu et all
[21] provides a survey on current psychiatric practice of
LLMs, along with a series of corpus resources that could be
used for training psychiatric LLMs. Limitations concerning
LLM reproducibility, capabilities, usability, interpretability in
clinical settings are discussed, along with ethical concerns.

C. Q&A Pairs for Chatbot

A chatbot system that offers medical consultation services
to patients with ophthalmologic diseases is presented in [22],
in which the QA dataset is created closely with an ophthalmol-
ogist to obtain and verify medical data. In [23], Calfoforo et
al. investigates the integration of Retrieval-Augmented Gen-
eration (RAG) and the LangChain framework to develop a
QA system using the Llama-2 large-language model. The QA
system was designed to improve information retrieval accuracy
and relevance for policy-related questions of a university.
The QLoRA technique was employed for model fine-tuning.
Rasool et al. assess LLM performance in QA types, including
single choice, yes-no, multiple choice, and number extraction
questions from documents [24]. An automated disease QA
system named Disease Guru–Long-Form Question Answer
(DG-LFQA) is introduced by Sukhwal et. al. in [25]. DG-
LFQA employs LLM and knowledge graph to answer disease-
related questions appropriate for users.

III. DATASET CURATION

The quality of training datasets is critical to any machine
learning mission [26, 27]. We curated a high-quality dataset
by filtering relevant questions and answers about sepsis from
PubMedQA and HealthCareMagic QA. The process involved:

1. Article Search and Curation: We searched for relevant
articles on sepsis and compiled them into curated ”golden
PDFs,” excluding irrelevant information.

2. PDF Processing: We used the Gemma-2B model to
process these PDFs, converting them to text and chunking
them into manageable sections.
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Fig. 1. The data pipeline. It summarizes the full curation workflow: (i) lexical deduplication using ROUGE-L with n-grams,
(ii) semantic deduplication using embedding similarity with cosine thresholding, and (iii) final quality screening using an

LLM-as-a-judge rubric focused on accuracy, helpfulness, and safety.

3. Q&A Generation: Each chunk was processed to generate
Q&A pairs, formatted into JSON lines for easy integration
into our dataset.

4. Data Compilation: The generated pairs were collected
into a DataFrame and saved as a JSONL file, ensuring a robust
and well-structured dataset.

To optimize our three-stage pipeline, we conducted
systematic experiments at each filtering stage. For lexical
analysis, we tested multiple n-gram configurations (n=2, 3,
and 4) combined with four ROUGE-L similarity thresholds
(0.80, 0.85, 0.90, and 0.95) to identify the optimal balance
between duplicate removal and content preservation. In the
semantic analysis stage, we evaluated four different embedding
models—PubMedBERT-SBERT, all-MiniLM-L6-v2,
gte-base, and bge-base-en-v1.5—across three
cosine similarity thresholds (0.85, 0.90, and 0.95) to
determine which combination best captured medical semantic
similarity. For the LLM-as-a-Judge component, we employed
MedGemma 4B-IT with a six-dimensional evaluation rubric,
testing different quantization and generation parameters to
balance evaluation quality with computational efficiency. The
following subsections detail the results and final parameter
selections for each stage.

As illustrated in Figure 1, the pipeline consists of lexical,
semantic, and LLM-based filtering stages.

A. Lexical Analysis

Fig. 2. Lexical analysis pipeline.

As shown in the pipeline in Figure 2, we performed a lexical
analysis of the QA pairs to prepare for the semantic analysis.
Lexical analysis is the stage of text processing in which
characters are divided into tokens, such as words or symbols,
while leaving out irrelevant elements such as spaces [28]. The
input for the beginning of the analysis was the combined pairs
of questions and answers in one text string to compare pairs
based on the exact use of words. Duplicates at the surface level
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were removed through lexical filtering and approximately 3.2
million pairwise comparisons were evaluated from 2554 QAs.

A combination of ROUGE-L threshold tuning and n-grams
was utilized to capture phrasing and structural repetition be-
yond simple word overlap. ROUGE-L measured text similarity
based on word order using the longest common subsequence
(LCS), with scores ranging from 0 to 1 [29]. ROUGE-L scores
preserve sentence structure by only considering ordered word
overlaps [30]. As defined by Lin, given two sequences (𝑋) and
(𝑌 ) of lengths (𝑚) and (𝑛), recall and precision are defined
as

𝑅𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋,𝑌 )

𝑚
(1)

𝑃𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋,𝑌 )

𝑛
(2)

and combined into an F-measure:

𝐹𝑙𝑐𝑠 =
(1 + 𝛽2) 𝑅𝑙𝑐𝑠 𝑃𝑙𝑐𝑠

𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠

, (3)

which is the similarity calculation [30]. In our code, we
utilized the rouge-scorer implementation from Google’s rouge-
score package. In this case, 𝛽 is fixed at 1 [31].

As previously stated, ROUGE-L considers the longest com-
mon subsequence, which means that it could undervalue
shorter, similar fragments. Therefore, to establish a thorough
lexical filter, we incorporated n-grams to capture smaller
subsequence overlaps. N-grams break each question into short
phrases (𝑛 = 2, 3, and 4) to identify repeated phrasing [32].
ROUGE-L thresholds of 0.80, 0.85, 0.90, and 0.95 were tested
for each n-gram setting to determine whether two QAs were
similar enough for one to be discarded. After testing all combi-
nations of 𝑛 and the threshold in the aforementioned range, we
noticed that there was no substantial difference in the number
of questions-answer pairs retained. Therefore, we considered
standard practices when making our decisions pertaining to
the ROUGE scores. Trigram overlap considers greater context
than bigram overlap. However, higher-order n-grams, such as
𝑛 = 4 tend to fail at detecting near-duplicate words if there
are phrasing discrepancies [33]. Thus, to establish balance, we
decided to fix 𝑛 = 3.

Given 𝑛 = 3, the threshold needed to be set accordingly
for preprocessing. Choosing 0.8 or 0.85 is too limiting in
this phase and removes too many phrases with meaningful
differences. However, a threshold of 0.95 retained several
near-identical pairs. Thus, 𝑛 = 3 and a threshold of = 0.9
established a balance for this initial phase. In this case,
we were able to remove explicit redundancy while retaining
meaningful differences.

This approach is derived from previous work that estab-
lished that balance prevents semantic loss, which is especially
important given that the tuned dataset of 2316 question–answer
pairs was used as input for subsequent semantic analysis [34].

B. Semantic Analysis

Following lexical filtering, we conducted a semantic analy-
sis to remove question–answer pairs that exhibited excessive
similarity in content, as opposed to just lexical similarity.

Before now, we were only removing question-answer pairs
when the wording being used was too similar. Now, however,
we are looking at the actual meaning of words and sentences
in context and removing question-answer pairs based on
contextual similarity.

Each concatenated pair (qa text = ”Q: <question>𝐴 :
<answer>”) was then embedded using PubMedBERT-SBERT
(NeuML/pubmedbert-base-embeddings) via the Sentence-
Transformers framework. Sentence-BERT (SBERT) processes
each input by first segmenting the text into subword tokens,
allowing rare or unfamiliar words to be effectively represented.
These tokens are then passed through a BERT-based trans-
former, where self-attention constructs context-aware embed-
dings for each token. To derive a fixed-length representation
of the entire question-answer pair, SBERT applies a pooling
operation across the token embeddings, resulting in a 768-
dimensional sentence vector.

We performed encoding in mini-batches with the setting
normalize_embeddings = True, ensuring that each
vector lay on the unit sphere so that cosine similarity was
equivalent to the inner product. For comparison baselines, we
applied the same pipeline using three widely adopted general-
purpose encoders: all-MiniLM-L6-v2, gte-base, and
bge-base-en-v1.5. A FAISS IndexFlatIP was then
constructed over the 768-dimensional float32 embeddings,
and for each item 𝑖, we retrieved all neighbors. A pair (𝑖, 𝑗)
(excluding self-matches) was considered a near-duplicate if
its cosine similarity exceeded the threshold 𝜏. To ensure
determinism in a single pass, only the higher index item
( 𝑗 > 𝑖) was removed when a duplicate was identified. This
procedure yields an order-stable greedy deduplication strategy:
retain the first occurrence and eliminate subsequent entries that
are semantically too close. The comparative results for each
encoder are shown in Figures 2-5.
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Fig. 3. Semantic Pipeline.

This representation enables comparison of question-answer
pairs based on semantic meaning rather than exact wording. As
a result, two pairs that differ noticeably in phrasing can still
be identified as equivalent–or sufficiently similar to warrant
removal–if their underlying meaning overlaps too closely [35].

We evaluated thresholds 𝜏 ∈ {0.85, 0.90, 0.95} by counting
the number of pairs that would be removed at each value
and visualizing the results with a bar plot (Figures 2-5).
In this procedure, every question-answer pair was compared
against all others, and each pairwise comparison was assigned
a similarity score between 0 and 1, where 0 indicated no
similarity and 1 indicated an exact match. Our objective was
to eliminate pairs whose semantic similarity exceeded the
threshold, and thus we tested multiple 𝜏 values to assess the
trade-off. For example, a pair with similarity score of 0.89
would be removed under 𝜏 = 0.85 but retained under 𝜏 = 0.90.

Based on these results and manual spot-checks (Figures
2-5), we found that 𝜏 = 0.90 offered the best balance. A
threshold of 0.85 proved too aggressive, as it removed para-
phrases that contributed meaningful clinical nuance, whereas
0.95 was too permissive, allowing clear rephrasings to re-
main. We therefore adopted 𝜏 = 0.90, after which we re-
constructed the original prompt and completion fields from
the retained qa_text and saved the filtered dataset as
filtered_questions.jsonl.

Fig. 4. Evaluation of general-purpose encoder
thenlper/gte-base at different cosine thresholds.

Fig. 5. Evaluation of general-purpose encoder
neuml/pubmedbert-base-embeddings at different cosine

thresholds.

Fig. 6. Evaluation of general-purpose encoder
BAAI/bge-base-en-v1.5 at different cosine thresholds.

Fig. 7. Evaluation of general-purpose encoder
all-miniLM-L6-v2 at different cosine thresholds.
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Fig. 8. LLM as a Judge.

C. LLM as a Judge

The concept of LLM as a Judge refers to the use of advanced
large language models to automatically evaluate the quality,
accuracy, and clinical relevance of text-based responses—such
as question–answer (Q&A) pairs—in a structured, objective,
and scalable manner. Traditionally, such evaluation has de-
pended on domain experts, typically clinicians or medical
researchers, who manually review and score each response.
While expert judgment provides high credibility, it intro-
duces several well-known limitations. Manual review is time-
consuming, as each Q&A pair must be individually read,
analyzed, and rated, often requiring hours or even days to
process large datasets. The process is also subjective: inter-
rater reliability tends to be low for nuanced or ambiguous
cases, since judgments may vary depending on a reviewer’s
clinical experience, interpretation, or personal biases. Further-
more, manual annotation is not scalable. Evaluating thousands
of pairs becomes prohibitively expensive and slow, rendering
real-time or large-scale deployment impractical. The process is
also resource-intensive, requiring ongoing recruitment, train-
ing, and management of annotators, which places financial and
logistical strain on projects. Finally, the availability of expert
reviewers is often limited, leading to bottlenecks or delays,
particularly in time-sensitive scenarios such as clinical trials
or urgent decision-support systems.

In contrast, LLM-based evaluation addresses these con-
straints by introducing speed, consistency, and scalability.
Once deployed, an LLM can process thousands of Q&A
pairs in minutes, enabling rapid feedback loops and real-time
integration into research pipelines. Evaluations are applied
uniformly according to predefined criteria, which reduces sub-
jectivity and ensures reproducibility across different datasets
and projects. The method is also inherently scalable, capable of
handling datasets ranging from hundreds to millions of exam-
ples with relatively modest computational costs. Importantly,
LLM-based evaluation is resource-light and always available:
it does not require continual recruitment of experts, it operates
continuously without fatigue, and it can provide on-demand
evaluations around the clock.

For this study, we employ MedGemma 4B-IT, a lightweight
yet clinically optimized large language model fine-tuned for
medical applications. Its domain specialization makes it par-

ticularly well-suited for assessing sepsis-related Q&A pairs,
ensuring that evaluations capture not only general linguistic
quality but also clinical accuracy, safety, and alignment with
medical guidelines.

To ensure comprehensive and fair evaluation, we designed
a multi-dimensional rubric that assesses Q&A pairs across
six dimensions: factual accuracy, clinical helpfulness, clarity,
safety, faithfulness to clinical guidelines, and ethical considera-
tions. Each criterion is scored on a five-point Likert scale, with
1 representing “poor” and 5 representing “excellent.” Factual
accuracy evaluates whether an answer is medically correct and
free from errors, such as providing accurate descriptions of the
signs and treatment of sepsis. Clinical helpfulness measures
whether the answer provides clear, relevant, and contextually
appropriate information that supports understanding without
offering diagnostic or therapeutic advice. Clarity assesses
the ease with which the information can be understood.
Safety checks for potentially harmful or misleading recom-
mendations, for instance suggesting unsupervised antibiotic
use. Faithfulness to guidelines ensures that responses remain
consistent with established standards of care, such as WHO
or NICE recommendations. Finally, ethical considerations
evaluate fairness, non-discrimination, and respect for patient
autonomy and confidentiality.

a) Safety Definition and Failure Modes.: In this work, a
response is considered unsafe if it exhibits any of the follow-
ing behaviors: (1) hallucinated clinical information, including
fabricated symptoms, laboratory values, diagnoses, or treat-
ments not supported by the source document; (2) provision
of diagnostic or therapeutic advice, such as recommending
medications, interventions, or definitive diagnoses, rather than
informational guidance; (3) omission of uncertainty or escala-
tion cues in high-risk scenarios where consultation with a qual-
ified healthcare professional is warranted; (4) contradiction of
the source document or established clinical knowledge; or (5)
false reassurance in the presence of potentially life-threatening
conditions such as sepsis. Only Q&A pairs that avoid these
behaviors and adhere to conservative, non-actionable clinical
language are retained.

During evaluation, the LLM-as-a-judge explicitly screens
for common failure modes observed in medical language
model outputs, including hallucinated or unverifiable clinical
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claims, overconfident diagnostic statements, partial responses
that omit critical safety warnings, inconsistent reasoning across
similar clinical contexts, and fluent but factually incorrect
explanations.

For each candidate Q&A pair, MedGemma 4B-IT evaluates
(i) factual alignment with the source document, (ii) clinical
appropriateness of scope, and (iii) compliance with the safety
criteria defined above. Q&A pairs failing any of these criteria
are discarded, reflecting a conservative filtering strategy that
prioritizes risk minimization over dataset size.

To anchor model evaluations to this rubric, we employ
few-shot prompting, which supplies the model with annotated
examples of high- and low-quality Q&A pairs. High-scoring
examples demonstrate comprehensive, accurate, and clinically
safe responses.

Fig. 9. Example of high score.

Fig. 10. Example of low score.

For instance, when asked “What are the early signs and
symptoms of sepsis?”, a high-quality response correctly iden-
tified early indicators such as fever, shivering, confusion, rapid
breathing, and clammy skin, while emphasizing the urgency
of seeking immediate medical attention. This example re-
ceived high scores across all dimensions, reflecting its factual
accuracy, clarity, and clinical helpfulness. In contrast, low-
scoring examples highlight typical failure modes. When asked
“How is sepsis treated?”, a poor-quality response suggested
taking leftover antibiotics at home and drinking fluids. Such
advice is unsafe, misleading, and inconsistent with clinical
best practices, resulting in low scores across factual accuracy,

safety, and faithfulness. These examples not only demonstrate
the application of the rubric but also provide anchors that help
the model generalize consistently to unseen Q&A pairs.

The evaluation pipeline was implemented with MedGemma
4B-IT configured in four-bit quantization (NF4, BFloat16)
to reduce memory usage while preserving evaluation fidelity.
All evaluations were conducted on a Google Colab T4 GPU
with 16 GB of VRAM, operating in evaluation mode to
ensure stability. Inputs were tokenized to a maximum sequence
length of 8192 tokens, with padding and truncation enabled as
needed. For generation, we set max_new_tokens to 200,
with a sampling temperature of 0.7 and a top-k value of
40, balancing diversity with determinism in outputs. Eval-
uations were batched in groups of eight using a dedicated
QAPairEvaluator class, which parsed outputs into struc-
tured JSON evaluations aligned with the six rubric dimensions.

This configuration proved both efficient and practical. Each
batch of eight Q&A pairs required approximately 12 seconds
to process, yielding an effective throughput of roughly 96 pairs
per minute. Peak GPU memory usage was 10.2 GB under four-
bit quantization, a substantial reduction compared to the 32 GB
required for full-precision inference. These results demonstrate
that reliable, rubric-based evaluation of medical Q&A datasets
can be achieved on accessible hardware, making LLM-based
judgment both scalable and cost-effective.

b) Limitations.: We acknowledge that reliance on a sin-
gle LLM-based judge introduces limitations, including poten-
tial model bias and incomplete coverage of rare or edge-
case failure modes. While prior studies have demonstrated
the feasibility of LLM-based evaluators in domain-specific
and medical settings, future work will explore multi-judge
ensembles, cross-model agreement, and clinician-in-the-loop
validation to further strengthen safety assurances.

IV. CONCLUSION

The rapid development of artificial intelligence and data
science has provided a new avenue for disease diagnosis. Our
work introduces a practical, open-source pipeline for creating
compact, clinically relevant chatbots. The methodology can
extend to other medical verticals such as cardiology, derma-
tology, or patient education, demonstrating the versatility and
potential impact of lightweight LLMs in healthcare. Future
work will include the application of explainable AI in the
design and development of medical chatbots [36, 37], which
will increase the trustworthiness of the AI tool.
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