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LLM-Enhanced Dueling DQN for Multi-Factory
Remanufacturing Optimization with Hybrid

Disassembly Lines and Drone Delivery
Shujin Qin, Shaokang Dai, and Bin Hu

Abstract—This paper addresses a profit-maximization prob-
lem in multi-factory remanufacturing that integrates hybrid
disassembly lines (straight and U-shaped) with cross-factory
drone delivery. The problem is formulated as a mixed-integer
program that employs AND/OR graphs to represent disassembly
sequencing and incorporates workstation opening and assign-
ment, precedence and conflict constraints, and drone routing
costs. To solve the resulting high-dimensional combinatorial
problem, we propose the LLM-enhanced Dueling Deep Q-
Network (LLM-DUEL), which extends the standard Dueling
DQN by incorporating a large language model fine-tuned with
low-rank adaptation. The fine-tuned LLM generates feasible
disassembly sequences, compressing the reinforcement learning
action space, while hierarchical action design and a profit-
increment reward mechanism further accelerate policy learning.
Experiments on multiple synthetic case sets demonstrate that
LLM-DUEL achieves faster convergence, improved stability, and
higher objective values compared with DQN, DUEL, and PPO,
while closely approaching CPLEX optima on tractable instances.
These results suggest that domain-adapted LLMs can substan-
tially enhance reinforcement learning by improving feasibility
and efficiency in complex remanufacturing scheduling problems.

Key Words—Large language model, dueling DQN, remanufac-
turing scheduling, hybrid disassembly line, drone delivery, LoRA.

I. INTRODUCTION

W ITH the accelerated global transition toward a circular
economy, remanufacturing has become a cornerstone

of sustainable development, functioning as a vital pathway
for efficient resource recycling and environmental protection
[1]. Unlike conventional recycling, remanufacturing preserves
much of the product’s embedded value by disassembling,
refurbishing, and reassembling components, thereby reducing
both material consumption and energy demand. This not only
mitigates resource waste but also promotes the integration of
ecological and economic benefits. To maximize these advan-
tages, optimizing the disassembly and recovery process has
emerged as a prominent research direction in both academic
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and industrial communities [2, 3]. Traditional manual disas-
sembly methods, while long utilized, are increasingly unable
to meet the escalating demands of large-scale electronic waste
processing due to their low efficiency, high labor costs, and
susceptibility to human error. In response, disassembly line
balancing problems (DLBP) have been extensively studied,
improving operational efficiency to some extent. However,
current disassembly optimization research often abstracts away
critical supply chain complexities, overlooking factors such as
product allocation strategies, inter-factory coordination, and
transportation logistics. These multi-level elements of the
reverse supply chain significantly influence overall system
efficiency, cost-effectiveness, and scalability [4, 5].

In the domain of multi-factory remanufacturing, the chal-
lenge of coordinating disassembly scheduling and resource
allocation across geographically distributed plants becomes
even more critical. A well-designed coordination mechanism
enables higher overall efficiency, better resource utilization,
and improved responsiveness to demand fluctuations. Several
representative studies have explored this problem space. For
example, Jing et al. [6] investigated collaborative production
planning in multi-factory environments with consideration of
remanufacturing and stockout management, while Marandi et
al. [7] developed an integrated supply chain model linking
multiple factories in a network, focusing on the cross-regional
flow of intermediate and finished products. Beyond inter-
factory planning, other research has investigated intra-factory
disassembly line balancing and scheduling. Qi et al. [8] in-
troduced multi-factory disassembly line balancing frameworks
to improve efficiency and reduce costs, whereas Guo [9]
incorporated human factors, optimizing both the disassembly
process and ergonomic aspects such as worker posture and
line configuration. Similarly, Zhou [10] addressed worker
fatigue and its impact on health and productivity, thereby
extending the optimization scope of multi-factory remanu-
facturing systems to human-centric considerations. Together,
these studies illustrate the breadth of approaches to multi-
factory optimization, but they also underscore the lack of
holistic solutions that unify operational scheduling, logistics,
and human-in-the-loop factors.

One particularly underdeveloped dimension in remanufac-
turing optimization is transportation logistics. As highlighted
by Lohmer and Lasch [11], transportation is often a decisive
factor in remanufacturing supply chains, especially when long-
distance movements are necessitated by capacity limitations
or cost constraints. Yet, despite its importance, more than
half of existing studies neglect transportation entirely. When
addressed, transportation has predominantly been modeled
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for finished product delivery (e.g., [7, 12]), with far fewer
studies considering intra-factory logistics or inter-factory flows
(e.g., [13, 14]). This narrow scope reinforces the widespread
assumption that transportation introduces additional costs and
burdens without offering potential performance improvements.
However, more recent work, such as Gu et al.’s study of third-
party logistics and multi-factory vehicle routing, has begun
to demonstrate the value of rethinking transportation as an
active enabler of system-wide optimization. This opens the
door to innovative approaches for remanufacturing logistics
that extend beyond static assumptions and embrace dynamic,
flexible delivery strategies.

In this context, emerging drone delivery technologies pro-
vide a compelling new dimension to remanufacturing logistics.
Drones offer agility, flexibility, and responsiveness in the
delivery of disassembled parts across factories, enabling faster
coordination and reducing bottlenecks. Their capacity to by-
pass ground congestion and operate on-demand positions them
as an attractive complement to traditional logistics systems.
However, their deployment also introduces novel challenges.
These include spatiotemporal constraints, such as flight range,
charging cycles, and payload limitations, as well as the need
for dynamic route optimization in response to fluctuating
demands and environmental uncertainties [15, 16]. Therefore,
effectively integrating drones into multi-factory remanufactur-
ing systems requires advanced optimization methods that can
address both structural complexities and real-time adaptability.

Reinforcement learning (RL) has recently gained recogni-
tion as a powerful paradigm for dynamic, data-driven op-
timization in complex industrial environments [17]. Unlike
heuristic or rule-based methods, RL achieves strategy op-
timization by enabling agents to learn through continuous
interaction with their environments. This allows for adaptive
decision-making that is especially valuable under uncertainty
and high-dimensional state spaces. In manufacturing and lo-
gistics, RL has already been applied to various combinatorial
optimization problems. Qin [18] tackled integrated production
and distribution scheduling with heuristic-enhanced RL, min-
imizing tardiness and delivery costs. Cai [19] introduced a
hybrid frog-leaping algorithm incorporating Q-learning, dy-
namically selecting search strategies to reduce production cy-
cles. Liu [20] proposed a hierarchical distributed architecture
for dynamic job shop scheduling, training Deep Q-Network
(DQN) agents to capture relationships between production
states and scheduling goals. Wang [21] advanced RL ap-
plications further by integrating cooperative memory agents
with specialized encoding and decoding methods to handle
multi-objective conflicts. These works collectively highlight
the transformative potential of RL for real-time, flexible opti-
mization in production and logistics systems.

Parallel to RL’s rise, Large Language Models (LLMs) have
demonstrated remarkable capabilities in semantic understand-
ing, reasoning, and task decomposition, which are directly
relevant to complex optimization challenges. LLMs’ ability
to parse structural knowledge and constraints positions them
as valuable complements to RL systems, particularly in areas
such as state space representation, action space reduction,
and reward shaping [22, 23]. Recent studies suggest that

integrating LLMs with RL can address exploration ineffi-
ciencies in high-dimensional spaces, accelerate learning, and
inject domain knowledge into decision-making. However, a
persistent limitation has been the insufficient fine-tuning of
LLMs for domain-specific optimization tasks. Without adap-
tation, LLM-driven strategies may suffer from instability or
weak generalization [24]. Fortunately, parameter-efficient fine-
tuning methods, such as Low-Rank Adaptation (LoRA), have
emerged as effective solutions. LoRA significantly reduces
computational overhead while maintaining high task-specific
performance [25]. This makes it particularly attractive for
embedding LLM capabilities within industrial optimization
frameworks.

This work distinguishes itself from prior LLM-RL inte-
grations through its targeted application and methodology.
While existing approaches often leverage LLMs for general
purposes like reward shaping [23] or state representation
[22], our method, LLM-DUEL, uniquely employs a fine-tuned
LLM as a feasibility filter and action space compressor for
combinatorial optimization. This focus is characterized by two
key innovations: (1) We utilize LoRA to specialize a general-
purpose LLM (Qwen2.5-7B) into a domain expert capable
of generating feasible disassembly sequences, moving beyond
the instability of prompt-based off-the-shelf models [24]. (2)
Our core contribution lies in using the LLM to actively prune
the vast action space of disassembly sequencing—a primary
source of complexity in scheduling problems. This targeted
strategy provides a more direct and efficient solution for our
domain compared to broader LLM-RL hybrids.

Building on these insights, this paper proposes a novel
LLM-enhanced Dueling Deep Q-Network (Dueling DQN)
framework to solve the Multi-Factory Remanufacturing Op-
timization Problem with Hybrid Disassembly Line and Drone
Delivery (MROP-HDD). Our framework integrates semantic
reasoning from fine-tuned LLMs with RL’s adaptive learning
capacity, enabling the dynamic modeling of disassembly se-
quences, the compression of high-dimensional action spaces,
and the acceleration of policy learning through knowledge-
informed reward mechanisms. Specifically, the proposed ap-
proach leverages LoRA-based fine-tuning to efficiently in-
corporate domain-specific knowledge into the LLM, thereby
ensuring both robustness and computational feasibility.

This work makes the following new contributions:
1) We establish a hybrid disassembly-line-based multi-

product, multi-plant remanufacturing optimization prob-
lem incorporating drone delivery. A mixed-integer pro-
gramming model is developed with the objective of
maximizing overall system profit.

2) We exploit the semantic comprehension capabilities
of LLMs to generate feasible disassembly sequences
and reduce the dimensionality of the RL action space,
directly addressing the inefficiency of exploration in
traditional RL methods.

3) We design a novel RL exploration mechanism grounded
in domain-informed reward functions. By fine-tuning
the LLM with LoRA, we embed prior knowledge into
the learning process, thereby accelerating policy conver-
gence and enhancing solution robustness.
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The organization of the rest of this work is as follows.
Section II provides a detailed description of the MROP-HDD,
including its assumptions, AND/OR graph representation,
and mathematical formulation. In Section III, the proposed
LLM-enhanced Dueling DQN algorithm is presented, covering
the LoRA-based fine-tuning strategy, action and state space
design, and reward mechanism. Section IV illustrates the
experimental setup, case generation, and comparative results
with baseline algorithms. Finally, Section V concludes the
paper and suggests future research directions.

II. PROBLEM DESCRIPTION

A. Problem Statement

In modern manufacturing and remanufacturing processes,
the design and optimization of disassembly lines are crucial
for improving resource recovery efficiency and reducing op-
erational costs. Particularly in multi-factory remanufacturing
systems, efficiently organizing disassembly processes, maxi-
mizing resource recovery and profit, while controlling carbon
emissions, is a challenging optimization problem.

This work focuses on the MROP-HDD in a drone delivery
environment, exploring efficient optimization strategies by
combining the practical application of straight-line and U-
shaped hybrid disassembly lines. The MROP-HDD can be
divided into three main stages: product allocation, disassembly
decision-making, and delivery optimization, as shown in Fig.
1.

These three stages are interrelated; product allocation in-
fluences disassembly decisions, and disassembly decisions
further determine the subsequent delivery optimization strate-
gies. By designing optimal strategies for each stage, resource
utilization efficiency can be improved, operational costs can
be reduced, and profit maximization can be further achieved.

1) Product Allocation Stage
The recycling center receives various types of waste prod-

ucts. It allocates them reasonably based on product characteris-
tics, market demand, disassembly factory processing capacity,
resource allocation, and geographical location to optimize
overall logistics costs. Once the product is allocated to a spe-
cific factory, the factory must further develop disassembly line
allocation strategies to match different disassembly processes
and resource conditions.

2) Disassembly Decision-Making Stage
The disassembly factory selects appropriate disassembly

tasks based on product disassembly rules and production
schedules, and allocates them to different disassembly lines.
The layout of the disassembly line can be either straight-line or
U-shaped, designed based on production efficiency and flexi-
bility. In actual production, each disassembly line dynamically
adjusts disassembly sequence and resource allocation based on
task complexity, component quantity, and workstation load.
Especially when recycling prices are uncertain, balancing
workstation loads and optimizing task sequencing becomes
key to improving disassembly efficiency and reducing costs.

3) Delivery Optimization Stage
After disassembly operations are completed, subassemblies

must be transported via the drone system deployed at each

factory to the corresponding manufacturing plants for the
subsequent remanufacturing process. The optimization goal of
this stage is to minimize transportation costs and maximize
overall profit while meeting timeliness constraints. To achieve
this, the following key factors must be considered: first, the
drone delivery route planning, which must optimize flight
trajectories to reduce total flight distance and energy consump-
tion; second, the allocation and scheduling of transportation
resources to enable efficient cross-factory coordination; third,
the profit potential of the destination manufacturing factories,
with priority given to those factories that can generate higher
remanufacturing value, thereby enhancing the overall system
benefits.

Through the collaborative optimization of these three stages,
MROP-HDD can achieve efficient integration of recovery,
disassembly, and delivery, improving the operation efficiency
of the remanufacturing system and ultimately maximizing
profit.

The integration of drone delivery is pivotal to this collab-
orative optimization, as it introduces a dynamic and flexi-
ble logistics capability that traditional ground vehicles lack.
Drones enhance system responsiveness by bypassing ground
congestion, enabling rapid, on-demand part delivery between
factories, which is crucial for tightly coupled remanufacturing
schedules. To establish a foundational and computationally
tractable model for this novel integration, we begin with the
simplifying assumption of a single drone per factory. This
setup effectively captures the core challenges of coordinated
route optimization and spatiotemporal constraints within the
profit maximization objective. The proposed framework is,
however, structurally extensible and lays the groundwork for
future research incorporating heterogeneous drone fleets.

To establish the optimization model of the proposed MROP-
HDD, we make the following assumptions:

• The matrices D, A, and B are known.
• Profit maximization is pursued, and products may not be

fully disassembled.
• Each disassembly task can only be performed once.
• Each disassembly factory has one drone.
• The drone departs from the disassembly factory, passes

through all the manufacturing plants requiring delivery,
and then returns.

B. AND/OR Graph

Before product allocation to factories, it is crucial to un-
derstand the dismantling relationships among product sub-
assemblies. The AND/OR graph, priority graph, and Petri net
[26, 27] are common methods for modelling these relation-
ships. The AND/OR graph employs a top-down modelling
approach, effectively illustrating the dismantling relationships
between tasks and subassemblies. For instance, the silicon
oil fan clutch [28] serves as a case study modelled using
an AND/OR graph. This fan clutch consists of the following
components: (𝑎) temperature sensor, (𝑏) front cover, (𝑐) valve
axis, (𝑑) valve, (𝑒) driven plate, ( 𝑓 ) seal ring, (𝑔) active plate,
(ℎ) bearing, (𝑖) gasket, ( 𝑗) back cover, and (𝑘) active axis.
Fig. 2 presents the schematic diagram of the silicon oil fan
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Fig. 1. Example diagram of MROP-HDD.

clutch, while Fig. 3 illustrates the corresponding AND/OR
graph, comprising 11 components, 17 subassemblies, and 7
tasks.

Fig. 2. A schematic of the silicon oil fan clutch.

Fig. 3. An AND/OR diagram of the silicone oil fan clutch.

Fig. 3 illustrates that Subassembly 1 can be dismantled into
Subassembly 2, Component 4, and Component 6 through Task
1, or it can be dismantled into Component and Subassembly
3 via Task 4. Moreover, Tasks 1 and 4 cannot be executed
simultaneously, highlighting their conflict. Additionally, Task 1
must be completed before Task 2. Three matrices are employed
to represent these relationships.

1) Incidence matrix
The correlation matrix 𝐷 = [𝑑𝑝𝑖 𝑗 ] describes the disas-

sembly relationships between tasks and subassemblies, where
𝑖 represents the subassemblies, 𝑗 represents the disassembly
task, and 𝑝 represents the product number.

𝑑𝑝𝑖 𝑗 =



1, If performing task 𝑗 results in obtaining
subassembly 𝑖.

−1, If subassembly 𝑖 can be disassembled
by task 𝑗 .

0, Otherwise.

2) Conflict matrix
The conflict matrix R = [r𝑝 𝑗𝑞] describes the conflicting

relationship between two tasks, where 𝑗 and 𝑞 represent the
disassembly task, 𝑝 represent the product number.

𝑟𝑝 𝑗𝑞 =


1, if task 𝑗 of product 𝑝 has a conflicting

relationship with 𝑞;
0, otherwise.

3) Precedence matrix
The precedence matrix S = [𝑠𝑝 𝑗𝑞], this work uses an

immediately after the relationship.

𝑠𝑝 𝑗𝑞 =


1, if task 𝑗 of product 𝑝 has a precedence

relationship with 𝑞;
0, otherwise.

C. Mathematical Model

This section shows a linear model of the MROP, where the
required notation and decision variables are defined as follows.

1) Notations:
Sets:

F Set of all disassembly factories,F={1,2,. . . ,F}.
M Set of all manufacture factories,M={1,2,. . . ,M}.
P Set of all End-of-life products,P={1,2,. . . ,P}.
I𝑝 Set of all subassemblies/parts in product 𝑝,

I𝑝 = {1, 2, . . . , 𝐼𝑝}.
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J𝑝 Set of all tasks in production p,
J𝑝 = {1, 2, . . . , 𝐽𝑝}.

W𝑆
𝑓

Set of linear disassembly line workstations of
the 𝑓 -th disassembly factory, W𝑆

𝑓
= {1, 2, . . . ,𝑊𝑆

𝑓
}.

W𝑈
𝑓

Set of U-shaped disassembly line workstations of
the 𝑓 -th disassembly factory, W𝑈

𝑓
= {1, 2, . . . ,𝑊𝑈

𝑓
}.

S Set of edges of the U-shaped disassembly line
workstation, S = {1, 2, }.

Parameters:
𝑣𝑚𝑝𝑖 The price of the 𝑝-th product of the 𝑖-th

subassemblies be purchased by the
𝑚-th factory.

𝑐𝑇
𝑓 𝑚𝑝𝑖

The transportation cost of transferring subassembly
or component 𝑖 of product 𝑝 from disassembly
factory 𝑓 to manufacturing factory 𝑚.

𝑡𝑝 𝑗 Time to execute the 𝑗-th task of the 𝑝-th
product by a worker.

𝑐𝐷
𝑓 𝑝 𝑗

The unite of time disassembly cost of task 𝑗 for
product 𝑝 in factory 𝑓 .

𝑐𝑂
𝑓

The unite of time cost of operating
disassembly factory 𝑓 .

𝑐𝑆
𝑓 𝑤

The fixed cost of operating straight-line workstation
𝑤 in disassembly factory 𝑓 .

𝑐𝑈
𝑓 𝑤

The fixed cost of operating U-shaped workstation
𝑤 in disassembly factory 𝑓 .

𝑁 Number of path points. The starting point is
factory 𝑓 , and the subsequent path points are
manufacturing factories 𝑚. 𝑁 = 𝑀 + 1.

𝑑 𝑓 𝑖 𝑗 Cost of drone delivery between various points.
2) Decision variables

𝑧𝑝 𝑓 =


1, product 𝑝 is performed at the linear disassembly

line of factory 𝑓

0, otherwise

𝑥𝑆𝑝 𝑗 𝑓 𝑤 =


1, if disassembly task 𝑗 in product 𝑝 is performed

at the workstation 𝑤 in the straight-line
disassembly line of factory 𝑓

0, otherwise

𝑥𝑈𝑝 𝑗 𝑓 𝑤𝑠 =


1, if disassembly task 𝑗 in product 𝑝 is performed

at 𝑠 side of the workstation 𝑤 in the U-shaped
disassembly line of factory 𝑓

0, otherwise

𝑦𝑆𝑓 =


1, Open the straight-line disassembly line of

the disassembly factory 𝑓

0, otherwise

𝑦𝑈𝑓 =


1, Open the U-shaped disassembly line of

the disassembly factory 𝑓

0, otherwise

𝑢𝑆𝑓 𝑤 =


1, open the workstation 𝑤 in the straight-line

disassembly line of factory 𝑓

0, otherwise

𝑢𝑈𝑓 𝑤 =


1, open the workstation 𝑤 in the U-shaped

disassembly line of factory 𝑓

0, otherwise

𝛼 𝑓 𝑚𝑝𝑖 =


1, if disassembly task 𝑗 in product 𝑝 is performed

at the workstation 𝑤 in the linear disassembly
line of factory 𝑓 by a worker

0, otherwise

𝛽 𝑓 𝑛 =


1, the drones of 𝑓 -th factory need to pass

through the path 𝑛-th point
0, otherwise

𝛾 𝑓 𝑖 𝑗 =


1, the drone of the 𝑓 -th factory has a path

from point 𝑖 to point 𝑗
0, otherwise

𝑇 𝑓 the linear disassembly line cycle time

𝑢 𝑓 𝑖 indicating the position of the point 𝑖 in the path

3) Objective of optimization

max 𝑓 =∑︁
𝑘∈K

∑︁
𝑚∈M

∑︁
𝑝∈P

∑︁
𝑖∈I𝑝

𝑣𝑚𝑝𝑖𝛼𝑘𝑚𝑝𝑖 −
∑︁
𝑘∈K

∑︁
𝑝∈P

∑︁
𝑗∈I𝑝

∑︁
𝑤∈W𝑆

𝑘

𝑐𝐷𝑝 𝑗 𝑡𝑝 𝑗𝑥
𝑆
𝑝 𝑗𝑘𝑤

−
∑︁
𝑘∈K

∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

∑︁
𝑤∈WU

𝑘

∑︁
𝑠∈S

𝑐𝐷𝑝 𝑗 𝑡𝑝 𝑗𝑥
𝑈
𝑝 𝑗𝑘𝑤𝑠 −

∑︁
𝑘∈K

𝑐𝑂𝑘 𝑇𝑘

−
∑︁
𝑘∈K

∑︁
𝑤∈WS

𝑘

𝑐𝑆𝑘𝑤𝑢
𝑆
𝑘𝑤 −

∑︁
𝑘∈K

∑︁
𝑤∈WU

𝑘

𝑐𝑈𝑘𝑤𝑢
𝑈
𝑘𝑤

−
∑︁
𝑘∈K

∑︁
𝑖∈N

∑︁
𝑗∈N, 𝑗≠𝑖

𝛾𝑘𝑖 𝑗𝑑𝑘𝑖 𝑗

(1)
The objective function 1 represents the profit in the reman-

ufacturing process. The first term is the revenue from selling
disassembled subcomponents or parts. The second term is the
disassembly cost generated by the straight disassembly line.
The third term is the disassembly cost generated by the U-
shaped disassembly line. The fourth term is the operating
cycle cost of opening the factory. The fifth and sixth terms
are the workstation opening costs of the straight and U-shaped
disassembly lines. The last term is the cost generated by drone
delivery.

4) Constraints

∑︁
𝑚∈M

𝛼 𝑓 𝑚𝑝𝑖 ≤
∑︁
𝑤∈W𝑆

𝑓

∑︁
𝑗∈J𝑝

𝑑𝑝𝑖 𝑗𝑥
𝑆
𝑝 𝑗 𝑓 𝑤 +

∑︁
𝑤∈W𝑈

𝑓

∑︁
𝑗∈J𝑝

∑︁
𝑠∈S

𝑑𝑝𝑖 𝑗𝑥
𝑈
𝑝 𝑗 𝑓 𝑤𝑠 ,

∀ 𝑓 ∈ F,∀𝑝 ∈ P,∀𝑖 ∈ I𝑝 \ {1}
(2)∑︁

𝑓 ∈F

𝑧𝑝 𝑓 = 1,∀𝑝 ∈ P (3)

𝑦𝑆𝑓 + 𝑦
𝑈
𝑓 ≤ 1,∀ 𝑓 ∈ F (4)
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𝑧𝑝 𝑓 ≤ 𝑦𝑆𝑓 + 𝑦
𝑈
𝑓 ,∀𝑝 ∈ P,∀ 𝑓 ∈ F (5)

𝑢𝑆𝑓 𝑤 ≤ 𝑦𝑆𝑓 ,∀𝑤 ∈ W𝑆
𝑓 ,∀ 𝑓 ∈ F (6)

𝑢𝑈𝑓 𝑤 ≤ 𝑦𝑈𝑓 ,∀𝑤 ∈ W𝑈
𝑓 ,∀ 𝑓 ∈ F (7)∑︁

𝑤∈W𝑆
𝑓

𝑥𝑆𝑝 𝑗 𝑓 𝑤 +
∑︁
𝑤∈W𝑈

𝑓

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗 𝑓 𝑤𝑠 ≤ 𝑧𝑝 𝑓 ,

∀𝑝 ∈ P,∀ ∈ F,∀ 𝑗 ∈ J𝑝

(8)

𝑥𝑆𝑝 𝑗 𝑓 𝑤 ≤ 𝑢𝑆𝑓 𝑤 ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝 ,∀ 𝑓 ∈ F,∀𝑤 ∈ WS
𝑓 (9)

𝑥𝑈𝑝 𝑗 𝑓 𝑤𝑠 ≤ 𝑢
𝑈
𝑓 𝑤 ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝 ,∀ 𝑓 ∈ F,∀𝑤 ∈ WU

𝑓 ,∀𝑠 ∈ S
(10)

∑︁
𝑓 ∈F

©­­«
∑︁
𝑤∈WS

𝑓

𝑥𝑆𝑝 𝑗 𝑓 𝑤 +
∑︁
𝑤∈WU

𝑓

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗 𝑓 𝑤𝑠

ª®®¬ ≤ 1,

∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝

(11)

∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

𝑡𝑝 𝑗𝑥
𝑆
𝑝 𝑗 𝑓 𝑤 ≤ 𝑇 𝑓 ,∀ 𝑓 ∈ F,∀𝑤 ∈ W𝑆

𝑓 (12)

∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

∑︁
𝑠∈S

𝑡𝑝 𝑗𝑥
𝑈
𝑝 𝑗 𝑓 𝑤𝑠 ≤ 𝑇 𝑓 ,∀ 𝑓 ∈ F,∀𝑤 ∈ W𝑈

𝑓 (13)

∑︁
𝑤∈W𝑆

𝑓

𝑤

(
𝑥𝑆𝑝 𝑗1 𝑓 𝑤 − 𝑥𝑆𝑝 𝑗2 𝑓 𝑤

)
+𝑊𝑆

𝑓

©­­«
∑︁
𝑤∈W𝑆

𝑓

𝑥𝑆𝑝 𝑗2 𝑓 𝑤 − 1
ª®®¬ ≤ 0,

∀ 𝑓 ∈ F,∀𝑝 ∈ P,∀ 𝑗1, 𝑗2 ∈ J𝑝 , 𝑠𝑝 𝑗1 𝑗2 = 1
(14)∑︁

𝑤∈W𝑆
𝑓

𝑥𝑆𝑝 𝑗2 𝑓 𝑤 ≤
∑︁
𝑗1∈J𝑝

∑︁
𝑤∈W𝑆

𝑓

𝑥𝑆𝑝 𝑗1 𝑓 𝑤𝑠𝑝 𝑗1 𝑗2 ,

∀ 𝑓 ∈ F,∀𝑝 ∈ P,∀ 𝑗2 ∈ J𝑝 , 𝑑𝑝1𝑞 = 0
(15)

∑︁
𝑤∈𝑊𝑈

𝑓

(𝑤(𝑥𝑈𝑝 𝑗1 𝑓 𝑤1 − 𝑥
𝑈
𝑝 𝑗2 𝑓 𝑤1) + (2𝑊𝑈

𝑓 − 𝑤)

(𝑥𝑈𝑝 𝑗1 𝑓 𝑤2 − 𝑥
𝑈
𝑝 𝑗2 𝑓 𝑤2)) + 2𝑊𝑈

𝑓

©­­«
∑︁
𝑤∈W𝑈

𝑓

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗2 𝑓 𝑤𝑠 − 1
ª®®¬ ≤ 0,

∀ 𝑓 ∈ F,∀𝑝 ∈ P𝑝 ,∀ 𝑗1, 𝑗2 ∈ J𝑝 , 𝑠𝑝 𝑗1 𝑗2 = 1
(16)∑︁

𝑤∈WU
𝑓

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗2 𝑓 𝑤𝑠 ≤
∑︁
𝑗1∈J𝑝

∑︁
𝑤∈WU

𝑓

∑︁
𝑠∈S

(𝑥𝑈𝑝 𝑗1 𝑓 𝑤𝑠𝑠𝑝 𝑗1 𝑗2 ),

∀ 𝑓 ∈ F,∀𝑝 ∈ P,∀ 𝑗2 ∈ J𝑝 , 𝑖 = 1, 𝑑𝑝𝑖 𝑗2 = 0
(17)

∑︁
𝑤∈W𝑆

𝑓

(
𝑥𝑆𝑝 𝑗1 𝑓 𝑤 + 𝑥𝑆𝑝 𝑗2 𝑓 𝑤

)
≤ 1,

∀ 𝑓 ∈ F,∀𝑝 ∈ P,∀ 𝑗1, 𝑗2 ∈ J𝑝 , 𝑟𝑝 𝑗1 𝑗2 = 1
(18)

∑︁
𝑤∈W𝑈

𝑓

∑︁
𝑠∈S

(
𝑥𝑈𝑝 𝑗1 𝑓 𝑤𝑠 + 𝑥

𝑈
𝑝 𝑗2 𝑓 𝑤𝑠

)
≤ 1,

∀ 𝑓 ∈ F,∀𝑝 ∈ P,∀ 𝑗1, 𝑗2 ∈ J𝑝 , 𝑟𝑝 𝑗1 𝑗2 = 1
(19)

𝛽 𝑓 𝑛 ≥ 𝛼 𝑓 𝑚𝑝𝑖 ,
∀ 𝑓 ∈ F,∀𝑚 ∈ 𝑀,∀𝑝 ∈ P,∀𝑖 ∈ I𝑝 \ {1}, 𝑛 ∈ N \ {1}

(20)

∑︁
𝑗∈N,𝑖≠ 𝑗

𝛾 𝑓 𝑖 𝑗 = 𝛽 𝑓 𝑖 ,∀ 𝑓 ∈ F,∀𝑖 ∈ N (21)

∑︁
𝑖∈N,𝑖≠ 𝑗

𝛾 𝑓 𝑖 𝑗 = 𝛽 𝑓 𝑖 ,∀ 𝑓 ∈ F,∀ 𝑗 ∈ N (22)

𝑢 𝑓 𝑖 − 𝑢 𝑓 𝑗 + (𝑁 − 1)𝛾 𝑓 𝑖 𝑗 ≤ 𝑁 − 2,∀ 𝑓 ∈ F,∀𝑖, 𝑗 ∈ N \ {1}, 𝑖 ≠ 𝑗

(23)
Constraints 2–23 collectively define assignment, sequenc-

ing, resource opening and drone routing decisions. Briefly,
decision variable 𝛼 𝑓 𝑚𝑝𝑖 records which subcomponents (or
subassemblies) are disassembled and the plant to which they
are assigned, while Constraint 3 guarantees that each product
is assigned to exactly one plant. Constraints 4–5 enforce that
each plant opens at most one line type, and Constraints 6–
10 ensure tasks are executed only at workstations compatible
with the opened line type. Constraint 11 requires each task of
each product to be executed exactly once. Constraints 12–13
define the plant operating time via the maximum workstation
load 𝑇 𝑓 . Precedence is enforced by Constraints 14 and 16,
with Constraints 15 and 17 handling tasks that have no
immediate predecessors. Task-conflict relations are addressed
in Constraints 18–19.

Constraint 20 introduces binary variable 𝛽 𝑓 𝑛 to indicate
whether the drone route visits delivery node 𝑛 associated with
plant 𝑓 . Intuitively, 𝛽 𝑓 𝑛 is activated whenever the disassembly
assignment decisions (recorded in the 𝛼 variables) require a
physical transfer or delivery to that plant — i.e., if one or
more subassemblies are produced at some origin and must be
delivered to plant 𝑓 , Constraint 20 forces the corresponding
𝛽 𝑓 𝑛 to take value 1 so that the delivery node is included in
the route.

Constraints 21–22 then enforce flow conservation for the
drone tour: each visited delivery node has exactly one
incoming and one outgoing arc, which guarantees con-
nectivity of the selected route. Constraint 23 applies the
Miller–Tucker–Zemlin (MTZ) sub-tour elimination technique
to prevent the route from decomposing into disconnected
cycles.

Taken together, these constraints tightly couple disassembly
assignment and cross-factory logistics: the model cannot as-
sign a subassembly to a remote plant without also accounting
for a drone visit to that plant, and the route selection (subject
to travel cost and capacity) will therefore be jointly optimized
with disassembly and workstation assignment. This enables
explicit trade-offs between local disassembly decisions and
global delivery costs, moving beyond models that treat logis-
tics as a fixed post-processing cost.
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III. PROPOSED ALGORITHM

A. LoRA Fine-tuning LLM

LoRA is a parameter-efficient fine-tuning method that re-
duces computational and storage costs while preserving model
performance. It achieves this by applying low-rank decompo-
sition to transformation matrices and updating only a small
number of trainable parameters. The key idea is to freeze the
original weights of the pre-trained model and insert trainable
low-rank matrices into specific layers to adapt the model
behavior.

In the Transformer architecture, consider a weight matrix
𝑊 ∈ R𝑑×𝑘 in a linear layer. Full fine-tuning requires updating
all 𝑑 × 𝑘 parameters. By contrast, LoRA represents the update
Δ𝑊 as the product of two low-rank matrices:

Δ𝑊 = 𝐴𝐵,

where 𝐴 ∈ R𝑑×𝑟 , 𝐵 ∈ R𝑟×𝑘 , and the rank 𝑟 ≪ min(𝑑, 𝑘).
This decomposition reduces the number of trainable parame-
ters from 𝑑× 𝑘 to 𝑑×𝑟+𝑟× 𝑘 . For example, when 𝑊 is of size
1024×1024 and 𝑟 = 8, LoRA trains only 1024×8+8×1024 =

16,384 parameters, which is approximately 98.44% fewer than
the 1,048,576 parameters required by full fine-tuning.

In summary, LoRA provides an efficient and lightweight
fine-tuning strategy that significantly reduces resource de-
mands while maintaining strong transferability. This makes
it particularly suitable for resource-constrained environments
and multi-task adaptation.

In this study, we fine-tune the open-source large model
Qwen2.5-7B using the LoRA method implemented in the
open-source tool Unsloth to enhance its ability to understand
product disassembly task sequences. The hyperparameters
for the LoRA fine-tuning were selected based on common
practices in the literature [25] and initial validation on a small
held-out dataset. We used a LoRA rank 𝑟 = 8, applied to all
linear layers in the model. The training was conducted with a
batch size of 2, using the AdamW optimizer with a learning
rate of 2×10−4 and a linear learning rate scheduler. The model
was fine-tuned for 3 epochs. This configuration was chosen to
balance fine-tuning efficiency and model performance, suc-
cessfully yielding the high accuracy required for subsequent
RL tasks. To support this fine-tuning, we construct a dataset
in Alpha format containing the following key components:

1) Instruction: A clear description of the specific task
for the model, directing it to generate corresponding
disassembly tasks.

2) Input: Additional background information or contextual
data that helps the model better understand task require-
ments.

3) Output: The expected output of the model, namely
the disassembly task sequence it should generate under
given instruction and input conditions.

The dataset is designed to improve the model’s understand-
ing of disassembly tasks, enabling it to generate efficient and
reasonable disassembly sequences. These outputs can then be
used in subsequent optimization-based decision-making. Table
I illustrates an example of the fine-tuning dataset.

B. Action Space Design

The action space is structured hierarchically to reflect the
temporal sequence of decision-making in the disassembly
process:

1) Assign a product to a disassembly factory K and a
specific line type L.

2) Select a disassembly task sequence from the options
generated by the fine-tuned LLM.

3) Assign each task in the chosen sequence to a specific
workstation W.

In the initial decision step an action index is mapped to
(K,L) (implemented via a modulo operation on the discrete
action index). After the factory and line type are selected,
the agent chooses one of the feasible disassembly sequences
proposed by the LLM; each LLM sequence has a special token
-1 appended to signal a product switch, and the selected
sequence is stored in the environment state for subsequent
task-level actions. During the task-assignment phase an action
corresponds to selecting a workstation W for the current task
in the stored sequence; when -1 is encountered the agent
switches to the next product or terminates the episode.

The fine-tuned LLM acts as a sequence generator that
proposes a small set of candidate sequences (top-𝐾) for each
product. At episode start (or when a new product type is first
encountered) the LLM generates these top-𝐾 candidates; a
lightweight constraint checker then validates each candidate
against the AND/OR precedence relations and task-conflict
constraints, and only validated sequences are retained and
indexed in the environment (denote the validated set size by
𝐾𝑝 ≤ 𝐾). The agent’s action selection is hierarchical: (1)
choose (K,L), (2) choose a sequence index 𝑘 ∈ {1, . . . , 𝐾𝑝}
selecting one validated LLM proposal, and (3) perform per-
task workstation assignment following the chosen sequence.
To preserve exploration we apply an 𝜀-greedy policy over se-
quence indices (with occasional uniform sampling of sequence
indices) and periodically allow sampling of random feasible
sequences outside the LLM proposals. Sequence generation
is invoked sparsely (cached after first generation and updated
only periodically or when new product families appear) to
reduce runtime overhead. This integration reduces invalid/low-
quality sequencing choices and compresses the effective action
space, while retaining task-level exploration necessary for fine-
grained workstation assignment.

C. State Space Design

The state of the environment is represented by a 10-
dimensional vector, designed to provide comprehensive con-
textual information for the agent’s policy and value networks.
The components of the state vector are defined in Table II.

This state representation encapsulates all essential re-
source allocation information required for immediate decision-
making while also integrating the economic factors necessary
for reward calculation. The holistic design supports informed
value estimation and promotes stable and efficient learning
convergence.
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TABLE I An Example of Data Set.

Content

Instruction
The clutch consists of the following complete disassembly sequence:

[[0, 1, 5, 6, 2], [0, 1, 5, 2, 6], [0, 1, 2, 5, 6], [0, 5, 1, 6, 2], [0, 5, 1, 2, 6], [0, 5, 6, 1, 2], [3, 4, 5, 6, 2], [3, 4, 5, 2, 6], [3, 4, 2, 5, 6]].

Input Select a disassembly sequence for the clutch.

Output [0, 1, 5, 6, 2]

TABLE II State Vector Representation.

Index Description

0 Product (𝑃), identifying the product currently being processed.

1 Factory (𝐾), indicating the selected disassembly factory.

2 Workstation (𝑊), denoting the workstation assigned to the task.

3 Disassembly Line (𝐿), specifying the type of disassembly line.

4 Task (𝐽), representing the current disassembly task.

5–9: A set of accumulated economic indicators:

• Component revenue (profit from sold parts),

• Disassembly cost (based on task time and cost rate),

• Factory cycle cost (operational cost proportional to workload),

• Workstation startup cost (fixed and variable costs),

• Transportation cost (computed via dynamic programming).

D. Reward Design

The reward function is designed to reflect the environmental
dynamics and is segmented according to different operational
phases. Specifically, during the product allocation phase, dis-
assembly sequence selection, product switching, and at the
end of an episode, none of these actions directly influence the
profit. Therefore, the reward value in these cases is set to 0.

During the workstation assignment phase, however, the
reward function is defined as the incremental profit generated
by the action. The reward is calculated as follows:

𝑅 =

{
profit − lastprofit, during the disassembly phase
0, otherwise

(24)

This design ensures that the agent receives immediate feed-
back only when its actions lead to tangible economic gains,
thereby promoting efficient and profit-oriented behavior during
the disassembly operation.

IV. EXPERIMENTAL STUDY

To comprehensively evaluate the performance of the pro-
posed LLM-based Dueling DQN (LLM-DUEL) algorithm, we
conduct a comparative study against three widely used rein-
forcement learning baselines: the Dueling Deep Q-Network
(DUEL), the standard Deep Q-Network (DQN), and Proxi-
mal Policy Optimization (PPO). All algorithms are tested on
identical experimental cases to ensure fairness in comparative
validation.

The computational experiments are executed on a Windows
11 platform equipped with an AMD(R) Core(TM) 4800H CPU
(2.90 GHz, 16.00 GB RAM) and an NVIDIA GTX 1650
GPU for RL training and baseline comparisons. For LLM

fine-tuning, the Qwen2.5-7B model is trained on Windows
11 with WSL2 and Ubuntu 22.04.5 LTS, running on an
AMD Ryzen 5 7500f CPU (3.70 GHz, 32.00 GB RAM)
and an NVIDIA GeForce RTX 4070 Super GPU. This dual-
environment setup ensures both the RL agents and the LLM
fine-tuning process have sufficient computational resources
to handle the complexity of the multi-factory optimization
problem.

A. Case Generation
To test the robustness of the algorithms across varying

complexities, we select four distinct product types for disas-
sembly: washing machine, computer, clutch, and radio. The
washing machine and computer represent relatively small-
scale disassembly cases, whereas the clutch and radio serve
as complex cases due to their structural intricacy. Specifically,
the clutch involves more sophisticated disassembly relations
between components, while the radio contains a large number
of subcomponents, thereby increasing both the task dimen-
sionality and the difficulty of sequencing.

For experimental consistency, the number of disassembly
plants is fixed at two and the number of manufacturing
plants at three. Disassembly costs, subcomponent values, and
transportation costs are generated stochastically, sampled from
normal distributions centered around fixed baseline values.
This approach simulates realistic market variations while pre-
serving controlled experimental conditions.

Table III summarizes the disassembly characteristics of
the selected products, while Table IV details the six test
cases constructed by combining different product types in
varying quantities. These cases span a wide spectrum of task
complexities, from a single washing machine (Case 1) to a
highly complex multi-product mix (Case 6).

TABLE III Products for disassembly test

Product Number of tasks Number of subcomponents
Washing machine 13 15

Computer 13 13
Clutch 7 17
Radio 30 29

B. Model Validation
Table V reports the maximum objective values found by

each algorithm and the CPLEX optimum (where available).
The performance gap between LLM-DUEL and the CPLEX
optimum is quantified by the relative GAP, calculated as
follows:

𝐺𝐴𝑃 =
𝐶𝑃𝐿𝐸𝑋 − 𝐿𝐿𝑀

𝐶𝑃𝐿𝐸𝑋
× 100% (25)
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TABLE IV Test cases of multiple products

Case
ID

Number of products Total number of
disassembly tasksWashing

machine
Computer Clutch Radio

1 1 0 0 0 13
2 1 1 0 0 26
3 1 1 1 0 33
4 1 1 1 1 63
5 2 1 1 1 76
6 2 2 1 1 89

TABLE V Objective values obtained by each algorithm and
LLM-DUEL gap to CPLEX.

Case ID LLM-DUEL DUEL DQN PPO CPLEX GAP (%)
1 664 664 664 664 664 0.00
2 1082 1077 1055 1056 1082 0.00
3 2400 2366 2357 2349 2417 0.70
4 3180 3105 2988 3038 3221 1.27
5 4063 3884 3772 3814 4086 0.56
6 4229 4075 4074 3884 – –

LLM-DUEL attains the closest objective values to CPLEX
across Cases 1–5, matching the optimum in Cases 1 and 2
and exhibiting a maximum gap of 1.27% (Case 4). The mean
gap over Cases 1–5 is approximately 0.51%, indicating strong
overall agreement with the exact solver on tractable instances.
For these cases, CPLEX found proven optima within a time
limit of three hours (10,800 seconds). In the complex Case 6,
however, CPLEX failed to converge within this time limit;
nevertheless, LLM-DUEL produced the best-known solution
(4229), outperforming all other RL baselines. These results
suggest that LLM-DUEL reliably finds near-optimal solutions
while maintaining robust performance on high-complexity
instances that challenge exact solvers.

C. Experimental Results and Analysis

To comprehensively evaluate the performance of the pro-
posed LLM-DUEL algorithm, we select three representative
reinforcement learning baselines for comparison: the stan-
dard Deep Q-Network (DQN) as a foundational value-based
method, its enhancement Dueling DQN (DUEL) which im-
proves value estimation by separately modeling state value
and action advantages, and Proximal Policy Optimization
(PPO) as a state-of-the-art policy-based algorithm known for
its training stability. This selection allows us to benchmark
against fundamental, advanced, and alternative RL paradigms.
Comparing LLM-DUEL directly with DUEL is particularly
insightful, as it isolates the performance gain attributable
solely to the integration of the fine-tuned LLM. The anticipated
underperformance of these baselines in our high-dimensional
combinatorial setting highlights the critical contribution of
the LLM, which provides explicit domain knowledge and
compresses the action space.

As shown in the training curves for six representative cases
(Fig. 4), LLM-DUEL consistently delivers the best perfor-
mance across all instances: it attains the fastest convergence,
the highest final objective values, and the lowest run-to-
run variability. DUEL is the second-best method, providing

a reasonable trade-off between convergence speed and final
objective, but still trailing LLM-DUEL. DQN achieves accept-
able results on some instances but generally exhibits slower
convergence and larger variance. PPO shows the weakest
performance here, suffering from unstable convergence and
limited improvement in objective value.

To further compare the training cost, we examine the sample
efficiency in terms of iteration steps required for convergence,
as observed in Fig. 4. LLM-DUEL achieved convergence at
approximately 10,420 steps, which was faster than DUEL
( 12,830 steps) and DQN ( 11,330 steps), demonstrating that
the LLM’s guidance leads to more efficient policy search.
It is noteworthy that while PPO converged at a comparable
number of steps ( 10,170), it settled at a significantly lower
performance level, indicating ineffective exploration despite its
sample efficiency. This analysis underscores that LLM-DUEL
achieves a superior balance—attaining higher solution quality
with fewer iterations than its value-based counterparts.

The superior behavior of LLM-DUEL stems primarily from
the LLM-generated disassembly sequences, which (i) elimi-
nate many invalid or low-quality actions, and (ii) substantially
compress the agent’s effective action space. This reduction
in spurious actions improves exploration efficiency and ac-
celerates policy learning, enabling LLM-DUEL to approach
CPLEX performance on tractable instances while remaining
far more efficient computationally for complex cases. Overall,
the results demonstrate that coupling structured, domain-aware
LLM guidance with RL yields a robust and efficient solution
approach for complex remanufacturing scheduling problems.

D. Effectiveness of LLM Fine-Tuning

To validate the effectiveness of the proposed LoRA fine-
tuning strategy, we conducted a comprehensive evaluation
comparing the sequence generation accuracy of the base
Qwen2.5-7B model against its fine-tuned counterpart. The
evaluation was performed on four distinct product types with
varying complexity levels: clutch, washing machine, radio, and
computer.

Each model was tasked with generating 20 disassembly
sequences per product to produce valid sequences that conform
to the predefined AND/OR graph constraints. The evaluation
metric was defined as the proportion of valid sequences
generated out of the 20 attempts, averaged across all test cases.

As presented in Table VI, the fine-tuned Qwen2.5-7B model
achieved perfect accuracy (100%) across all product types,
demonstrating its capability to generate valid disassembly
sequences consistently. In contrast, the base model exhibited
an overall accuracy of 73.75%, with performance varying
significantly based on product complexity.

The base model’s performance degradation was particularly
notable for the radio, which has the most complex disassembly
structure with 25 valid sequences. This product recorded the
lowest accuracy (60.00%), indicating that without task-specific
fine-tuning, the model struggles with complex combinatorial
optimization tasks. The clutch and computer, with relatively
simpler disassembly constraints, achieved higher accuracy
rates of 85.00% and 80.00%, respectively.
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Fig. 4. Comparison of training maps for various algorithms.
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TABLE VI Accuracy comparison between base and
fine-tuned Qwen2.5-7B models

Product Type
Number of

Valid Sequences
Base Model

Accuracy
Fine-tuned Model

Accuracy
Washing Machine 5 70.00% 100%

Computer 6 80.00% 100%
Clutch 9 85.00% 100%
Radio 25 60.00% 100%

Overall - 73.75% 100%

These results highlight two key insights: First, the base
Qwen2.5-7B model possesses inherent sequence generation
capabilities but lacks the specialized knowledge required for
consistent performance in disassembly tasks. Second, the
LoRA fine-tuning approach effectively injects domain-specific
knowledge, enabling the model to perfectly comprehend and
generate valid disassembly sequences regardless of product
complexity.

The 26.25% improvement in overall accuracy demonstrates
the critical importance of domain adaptation for LLMs in man-
ufacturing optimization tasks. This performance enhancement
directly contributes to the LLM-DUEL algorithm’s effective-
ness by ensuring that the reinforcement learning agent always
receives feasible disassembly sequences, thereby accelerating
policy search and improving solution quality.

Analysis of the base model’s errors revealed two primary
failure modes: (1) Format errors where the model generated
malformed sequence representations (e.g., ”[[1, 2, 5, 10, 11]”
with missing brackets), and (2) Logical errors where the
model produced sequences that violated precedence or conflict
constraints. The fine-tuned model eliminated both error types,
confirming that the LoRA adaptation successfully aligned the
model’s output patterns with the structural requirements of
disassembly sequencing.

V. CONCLUSION

This paper proposes LLM-Duel for the Multi-Factory Re-
manufacturing Optimization Problem with hybrid disassembly
lines and cross-factory drone delivery. By combining a LoRA-
fine-tuned LLM that generates feasible disassembly sequences
with a Dueling DQN policy that selects sequences and assigns
tasks, LLM-Duel reduces invalid actions, compresses the RL
action space, and achieves faster convergence, better training
stability, and higher objective values compared with standard
RL baselines and traditional methods.

While LLM-Duel demonstrates promising performance on
the synthetic, structurally realistic cases studied here, several
practical constraints should be noted before industrial deploy-
ment. First, the current implementation relies on offline LoRA
fine-tuning of a single base model using curated disassembly
examples; applying the approach to new product families
will typically require additional domain-specific data or more
advanced prompt/transfer strategies. Second, our experiments
make simplifying assumptions (deterministic parameters and
a single drone per factory) that abstract away stochastic
arrivals, variable processing times, heterogeneous drone fleets,

regulatory/airspace constraints, and other operational uncer-
tainties common in practice. Third, computational and latency
considerations matter: despite LoRA’s parameter efficiency,
large LLMs still incur non-trivial inference and (re)training
costs that may limit on-device or real-time deployment without
further model compression or distillation. Finally, safe and
effective rollout will require human-in-the-loop validation and
operator acceptance mechanisms to handle edge cases and
ensure safety. Addressing these issues motivates extensions
such as continual or online fine-tuning, explicit stochastic
modeling, support for heterogeneous multi-drone coordination,
and human-centric verification layers.

Future research will focus on extending the approach along
several directions: (i) exploring additional parameter-efficient
fine-tuning strategies to improve LLM sequence quality and
generalization; (ii) incorporating multiple and heterogeneous
drones, stochastic dynamics, and more flexible remanufac-
turing environments; (iii) integrating human-centric consid-
erations such as fatigue, ergonomics, and safety-aware al-
location; and (iv) validating the model on diverse factory
layouts and considering advanced optimization methods and
formal-model approaches to further enhance solution quality
[29, 30, 31, 32, 33].
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