
INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 129

Multi-Factory Remanufacturing Process
Optimization with Discrete Battle Royale Optimizer

Ziyan Zhao and Liangbo Zhou

Abstract—In the context of advancing transportation and
communication infrastructures, companies are increasingly es-
tablishing factories across the globe to support their international
expansion strategies. They achieve information sharing through
networks, forming a distributed multi-factory working environ-
ment. This work introduces and addresses a multi-factory reman-
ufacturing process optimization problem by considering hybrid
disassembly line balancing and multi-skilled worker allocation.
It has three phases: disassembly factory selection, disassembly
task scheduling, and manufacturing factory selection. A linear
programming model is established with the objective of opti-
mizing profitability. This work proposes to use a discrete Battle
Royale optimizer to solve the problem with a newly proposed
encoding structure. The experimental results are benchmarked
against CPLEX, confirming the validity and efficiency of the
proposed method. The results of its comparisons with genetic
algorithm, discrete migratory bird optimizer, fruit fly optimizer,
and dingo optimizer further validate its superiority over its peers.

Key Words—Multi-factory remanufacturing process optimiza-
tion Scheduling, hybrid disassembly line balancing, battle royale
optimization algorithm, multi-skilled workers

I. INTRODUCTION

W ITH the continuous development of science and tech-
nology and the growing demand for diverse and in-

dividualized markets, conventional centralized approaches to
disassembly planning and scheduling are often inadequate in
adapting to rapidly fluctuating market requirements [1], [2],
[3]. In this environment, besides the possible plan failure and
increased response cost, a classical single-factory mode may
face closure due to some single-point failures. Consequently,
to effectively address regional market demands, multinational
corporations frequently deploy a distributed network of fac-
tories across various geographical locations [4], [5]. With the
increase in the number of factories, it has become an urgent
problem to effectively schedule them to maximize the total
profit.

There has been growing interest in the multi-factory pro-
duction scheduling problem (MPSP) within distributed man-
ufacturing environments in recent literature [6]. However,

Manuscript received August 5, 2025; revised August 12 and August 28,
2025; accepted October 7, 2025. This article was recommended for publication
by Associate Editor Shujin Qin upon evaluation of the reviewers’ comments.

This work was supported in part by NSFC under Grant Nos. 61573089,
62073069 and 51405075, and in part by the Natural Science Foundation of
Shandong Prov-ince under Grant ZR2019BF004.

Z. Zhao is with the College of Information Science and En-
gineering, Northeastern University, Shenyang 110819, China (e-mail:
zhaoziyan@mail.neu.edu.cn).

L. Zhou is with the College of Information and Control Engineer-
ing, Liaoning Petrochemical University, Fushun 113001, China (e-mail:
1316550824@qq.com).

Corresponding author: Ziyan Zhao

Fig. 1. Multi-factory remanufacturing process optimization.

there is limited research on a multi-factory remanufacturing
process optimization problem (MRPOP). MRPOP refers to the
coordination and optimization of multiple factories’ operations
in the remanufacturing field, aiming to maximize the overall
profit of a remanufacturing system by performing resource
allocation, production planning, and logistics transportation.
Its structure is shown in Fig. 1. Its scheduling research can
be broadly divided into two classes: multi-factory homoge-
neous scheduling and multi-factory heterogeneous scheduling
[7]. In practical operations, due to the varying environments
in different factories and the differences in production and
disassembly capacities, solving a multi-factory heterogeneous
scheduling problem is required [8], [9]. Some progress has
been made in solving it. To tackle the challenges of MPSP,
various metaheuristic approaches have been developed. For
instance, Ziaee [10] introduced a fast metaheuristic built on
a construction process for rapid generation of high-quality
schedules. Similarly, Chang et al. [11] designed a hybrid ge-
netic algorithm complemented by a novel encoding mechanism
to overcome invalid job assignments in complex flexible job
shop scheduling. In a similar vein, Jia et al. [12] advanced
an improved genetic algorithm capable of handling both tra-
ditional and distributed scheduling paradigms.

Due to the rapid development of electronic information tech-
nology, the replacement speed of electromechanical products
such as televisions, refrigerators, and computers is increasing,
leading to a strong need to handle end-of-life (EOL) products



130 INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025

[13], [14], [15], [16], [17], [18]. Some scholars propose
a disassembly line balancing problem (DLBP) [19]. They
answer how to determine the number of active workstations
and plan disassembly tasks to optimize such performance as
disassembly profit. Many have conducted in-depth studies of
DLBP, but mostly focused on linear layouts [20] or U-shaped
ones [21], [22]. Although they have different characteristics
and applicable scenarios, there lacks any research that com-
bines them. Therefore, this work does so by establishing a
hybrid disassembly line. Such line can fully utilize factory
space by allocating different types of products or tasks to
the most suitable disassembly lines, thus maximizing space
utilization. Additionally, the most appropriate type of disas-
sembly lines for different disassembly phases can be selected
to optimize a disassembly process. This allows disassembly
lines to quickly adapt to market demand changes, thereby
improving disassembly efficiency and competitiveness.

In modern disassembly systems, manpower plays a crucial
role. As complex entities, workers usually possess multiple
skills that enable them to perform various tasks in a disassem-
bly process. Confronting the frequent changes experienced by
disassembly systems, such as changes in customer demands
or the occurrence of unexpected events, effectively allocating
these multi-skilled workers to machines can be a challenging
task [23]. Their proper assignment is of utmost importance.
Research on line balancing with multi-skilled workers has seen
diverse methodological contributions. Blum and Miralles [24]
applied a beam search-based algorithm to DLBP, optimizing
task and worker assignments to minimize system cycle time.
Similarly, Zaman et al. [25] leveraged genetic and heuristic
algorithms for the same problem, but with the objective of
minimizing a weighted sum of cycle time and total idle time.
The context of U-shaped assembly lines was explored by Ok-
suz et al. [26], who formulated a mixed-integer linear program
to maximize efficiency and solved it using both an artificial
bee colony algorithm and a genetic algorithm. In a dynamic
setting, Belassiria et al. [27] investigated the assembly line
rebalancing problem under uncertain demand. Their approach
combined a mathematical model with a heuristic-embedded
genetic algorithm to maximize production line efficiency. This
work combines MRPOP with DLBP to propose a Multi-
factory Remanufacturing-process-optimization Problem based
on Multi-skilled-workers (MRPM) and discusses its specific
application scenarios.

As MRPM is an NP-hard problem, heuristic algorithms
becomes a preferred solution especially for those sizable ones.
Some MRPM related studies are given next. The field has
seen the application of diverse metaheuristics, ranging from
the genetic algorithm by McGovern et al. [28] for DLBP,
to more specialized approaches for sequence planning like
the improved multi-objective ant colony algorithm by Feng et
al. [29] and the multiverse optimizer considering operational
faults by Fu et al. [30]. Further advancing the field, Guo et
al. [31] solved a human-machine collaborative DLBP with
stochastic times using a Pareto-improved shuffled frog-leaping
algorithm. These studies provide us with inspiration and ideas
to solve MRPM.

Battle Royale Optimizer (BRO) is an optimization algorithm

based on the strategy of a battle royale game [32]. It achieves
the iterative evolution of populations by simulating the search
process of trying to defeat neighboring soldiers in the game.
We choose it to solve MRPM because 1) it is easy to
understand and simple to operate and implement, 2) it has high
efficiency, robustness, and strong global search capability, and
3) it excels at balancing exploration and exploitation, leading
to the efficient discovery of high-quality solutions.

The main contributions this work aims to make are:
1) A key contribution of this work is the novel integration of

MRPOP and DLBP into a new problem termed MRPM. This
integrated problem is formally defined through a mixed-integer
program, with the objective set to maximize total disassembly
profit.

2) This work proposes a discrete BRO (DBRO) to solve
MRPW. In this algorithm, we design a novel encoding struc-
ture to represent solutions, and develop four novel soldier
search strategies: sequential variation, task variation, work-
station variation, and factory swap. These strategies enable
individuals to better search for quality solutions.

3) This work presents extensive empirical findings to
demonstrate the model’s correctness and the algorithm’s ef-
fectiveness. For the former, case tests are conducted by using
IBM CPLEX to confirms. For the latter, we compare the
optimisation results and running time of DBRO and CPLEX
given different case size. We also compare the results of DBRO
and such optimization algorithms as genetic algorithm (GA)
[33], discrete migratory bird optimizer (DMBO) [34], dingo
optimizer (DOA) [35], and fruit fly optimizer (FOA) [36], and
well show that DBRO is more effective in solving MRPM.

The rest of this paper is organized as follows. Section II
describes MRPM and its mathematical model. Section III
introduces the encoding and decoding scheme of MRPM,
DBRO, and the soldier’s search and battle processes. Section
IV details the experimental results, while Section V concludes
with a summary of the study and potential directions for future
research.

II. PROBLEM DESCRIPTION

A. Problem Statement
In recent years, the disassembly sector has undergone

significant transformations driven by the forces of economic
globalization. More and more disassembly companies are
establishing factories in different locations, forming a multi-
factory disassembly model to meet the product demands of
different regions. Due to their different geographical locations,
each factory may incur varying transportation cost and pur-
chase price, even when transporting the same subassemblies.
In addition, disassembly lines varies among disassembly fac-
tories, resulting in different disassembly time and cost even
for the same type of products. The core challenge lies in
coordinating the allocation of tasks and workstations within
each disassembly facility alongside the strategic selection
of both disassembly and manufacturing factories. Therefore,
this work focuses on how to use the available resources
effectively, allocate tasks from different customers to factories,
and coordinate the plans of all factories.



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 131

Fig. 2. The workflow of multi-factory remanufacturing
process optimization

This research is situated within an analytical framework of
a large-scale disassembly enterprise that operates a network of
geographically distributed factories. The enterprise has multi-
ple factories in different regions, all capable of disassembling
various products. In this context, each product can be assigned
to different disassembly factories to complete its disassembly
tasks, and the obtained subassemblies are transported to dif-
ferent manufacturing factories after the disassembly process.
As shown in Fig. 2, MRPM is divided into three main phases.

1) Disassembly factory selection
This phase focuses on product assignment, which involves

optimally assigning different EOL products to factories subject
to various constraints.

2) Disassembly task scheduling
This phase encompasses three critical allocation decisions:

disassembly line assignment, which entails selecting a specific
line within a factory for each product; task assignment, which
focuses on determining the optimal disassembly task sequence;
and workstation assignment, which involves distributing the
product’s tasks across the various workstations on the chosen
line.

3) Manufacturing factory selection
This phase orchestrates the distribution of subassemblies,

where the allocation decision is dictated by cost variations aris-
ing from differing purchasing prices at manufacturing factories
and the transportation expenses influenced by geographical
distances between facilities.

The optimization objective of MRPM in this work is to
maximize the total profit.
B. AND/OR Graph

There are precedence relationships among different disas-
sembly tasks during a disassembly process of EOL products.
The core challenge of the DLBP is to distribute disassembly
tasks among a series of workstations while adhering to the
predefined precedence relationships between these tasks. This
task assignment process yields a disassembly sequence that
meets all the constraints. For this purpose, the relationships
among tasks are modeled using AND/OR graphs. It is note-
worthy that alternative formal methods, including Petri nets
[37][38], precedence graphs [39], or others [40], [41], can also
be employed to model and analyze the disassembly process
and its resource requirements.

Fig. 4 shows the schematic graph of a rigid caster [42].
It consists of nine subassemblies /components (both called
subassemblies for conciseness in this paper) labeled as 1 to
9. Its AND/OR graph is shown in Fig. 3. An AND/OR graph
is composed of nodes, which depict subassemblies and are
denoted by integers within pointed brackets. The disassembly
tasks are captured by directed edges connecting these related
subassemblies. From this representation, it can be derived that
the product comprises 25 subassemblies and 32 disassembly
tasks.

To calculate the profits of subassemblies, three matrices are
used to describe the relationship between disassembly tasks
and subassemblies.

1) Incidence matrix

Let 𝐷 = [𝑑𝑝𝑖 𝑗 ] denote the incidence matrix that links
subassemblies and disassembly operations for each product
𝑝. The entry 𝑑𝑝𝑖 𝑗 is defined as

𝑑𝑝𝑖 𝑗 =


1, if task 𝑗 produces subassembly 𝑖 in product 𝑝,
−1, if task 𝑗 removes subassembly 𝑖 in product 𝑝,
0, otherwise.

2) Conflict matrix

Define the conflict indicator R = [rpj1j2 ], where

𝑟𝑝 𝑗1 𝑗2 =


1, if tasks 𝑗1 and 𝑗2 for product 𝑝 cannot

be processed simultaneously,
0, otherwise.

3) Precedence matrix

Let S = [spj1j2 ] represent task precedence, with

𝑠𝑝 𝑗1 𝑗2 =

{
1, if task 𝑗1 must precede task 𝑗2 for product 𝑝,
0, otherwise.

The following assumptions are made in this work:

1) Matrices D, R, and S are known.

2) Not all subassemblies need to be disassembled (called
selective disassembly).

3) Each workstation is assigned one worker.

4) The disassembled products are infinitely supplied.

5) Each disassembly task requires at least one disassembly
skill. The higher the skill level, the shorter the time required
to complete the task.

6) The processing time at any workstation must not exceed
the system cycle time.

7) Each activated workstation has at least one task.

C. Notations

Notation and symbols employed throughout this study are
listed below for reference.



132 ZHAO et al.: MULTI-FACTORY REMANUFACTURING PROCESS OPTIMIZATION WITH DISCRETE BATTLE ROYALE OPTIMIZER

Fig. 3. The AND/OR graph of a rigid caster.

Fig. 4. A schematic of a rigid caster.

Sets:
K Set of disassembly factories, K = {1, 2, ..., 𝐾}.
M Set of Manufacturing factories, M = {1, 2, ..., 𝑀}.
P Set of products, P = {1, 2, ..., 𝑃}.
I𝑝 Set of all subassemblies in product p, I𝑝 = {1, 2, ..., 𝐼𝑝}.

J𝑝 Set of all tasks in product p, J𝑝 = {1, 2, ..., 𝐽𝑝}.
W𝐿

𝑘 Set of linear workstations for the k-th factory,

W𝐿
𝑘 = {1, 2, ...,𝑊𝐿

𝑘 }.
W𝑈

𝑘 Set of U-shaped workstations for the k-th factory,

W𝑈
𝑘 = {1, 2, ...,𝑊𝑈

𝑘 }.
E Set of sides of U-shaped disassembly line workstation,

E = {1, 2}.
N Set of all additional skills, N = {1, 2, ..., 𝑁}.
Indexes:

p Product index, p∈ P.
i Subassembly index, i∈ Ip.
j Disassembly task index, j∈ Jp.
e Index of U-shaped workstation side, e ∈ E.
k Disassembly factory index. k ∈ K.

m Manufacturing factory index. m ∈ M.
n Skills index, n ∈ N.

Parameters:
𝑣𝑚𝑝𝑖 The m-th manufacturing factory acquires the price

of the i-th subassembly of the product p.

𝑐𝑇𝑘𝑚𝑝𝑖 Transportation cost of the subassembly i of the

product p from the k-th disassembly factory to
the manufacturing m factory.

tkwpj Disassembly time required by workers at the w-th
workstation of the disassembly factory k to
complete the task j of the product p.

cd
kpj The unit time cost of executing the task j of the

product p in the factory 𝑘 .
ck The unit time cost of activating the k-th

factory.

cL
kw Cost of activating the w-th linear workstation of the

k-th disassembly factory.

cU
kw Cost of activating the U-shaped workstation w of

the disassembly factory k.
C Cost of worker skills training.

𝛾kwn The matrix records the degree of mastery of the
n-th skill by workers at the w-th workstation in the
k-th factory in the initial state.

𝛽pjn The matrix depicts the disassembly relationship
between the task j of the product p and
the n-th skill.

Decision variables:

zpk =


1, If the product p is assigned to the k-th

disassembly factory;
0, otherwise.



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 133

xL
pjkw =


1, If the task j of the product p is assigned

for disassembly at the w-th linear workstation
of the k-th disassembly factory;

0, otherwise.

xU
pjkwe =


1, If the task j of the product p is assigned

to the e-side of the U-shaped workstation w
at the disassembly factory k for disassembly;

0, otherwise.

yL
k =


1, If the linear disassembly line of the k-th

disassembly factory is activated;
0, otherwise.

yU
k =


1, If the U-shaped disassembly line of the k-th

disassembly factory is activated;
0, otherwise.

uL
kw =


1, If the linear workstation w of the k-th

disassembly factory is activated;
0, otherwise.

uU
kw =


1, If the U-shaped workstation w of the k-th

disassembly factory is activated;
0, otherwise.

𝛼kmpi =


1, If the subassembly i of the p-th product

is transported from the disassembly k
factory to the m-th manufacturing factory;

0, otherwise.

𝜉kwn =


1, If workers at the w-th workstation of the

k-th factory utilize the n-th skill;
0, otherwise.

Tk, Cycle time of the k-th disassembly factory.

D. Mathematical Model

max 𝑓 = ©­«
∑︁
k∈K

∑︁
m∈M

∑︁
p∈P

∑︁
i∈Ip

(
vmpi − cT

kmpi

)
𝛼kmpi

−
∑︁
k∈K

∑︁
p∈P

∑︁
j∈Jp

∑︁
w∈WL

k

cd
kpjtkwpjx

L
pjkw

−
∑︁
k∈K

∑︁
p∈P

∑︁
j∈Jp

∑︁
w∈WU

k

∑︁
e∈E

cd
kpjtkwpjx

U
pjkwe

−
∑︁
k∈K

ckTk −
∑︁
k∈K

∑︁
w∈WL

k

cL
kwuL

kw −
∑︁
k∈K

∑︁
w∈WU

k

cU
kwuU

kw

−C
∑︁
k∈K

∑︁
w∈Wk

∑︁
n∈N

(𝜉kwn − 𝛾kwn )
ª®¬

(1)

The objective (1) maximizes the profit from disassembling
end-of-life (EOL) products. The first term denotes the net
gain from subassemblies after subtracting transport costs; the
second and third terms capture disassembly-related expenses;
the fourth term is the fixed cost for opening a disassembly

facility; the fifth and sixth terms correspond to the costs of
activating the associated workstations; and the seventh term
represents worker training costs. The model is subject to the
following constraints.∑︁

m∈M

𝛼kmpi ≤
∑︁

w∈WL
k

∑︁
j∈Jp

dpijxL
pjkw +

∑︁
w∈WU

k

∑︁
j∈Jp

∑︁
e∈E

dpijxU
pjkwe

∀k ∈ K, ∀p ∈ P, ∀i ∈ IP \ {1}.
(2)

∑︁
k∈K

zpk = 1, ∀p ∈ P (3)

yL
k + yU

k ≤ 1, ∀k ∈ K (4)

zpk ≤ yL
k + yU

k , ∀p ∈ P, ∀k ∈ K (5)

uL
kw ≤ yL

k , ∀w ∈ WS
k , ∀k ∈ K (6)

uU
kw ≤ yU

k , ∀w ∈ WU
k , ∀k ∈ K (7)

∑︁
w∈WL

k

xL
pjkw +

∑︁
w∈WU

k

∑︁
e∈E

xU
pjkwe ≤ zpk, ∀p ∈ P, ∀k ∈ K, ∀j ∈ Jp

(8)

xL
pjkw ≤ uL

kw, ∀p ∈ P, ∀j ∈ Jp, ∀k ∈ K, ∀w ∈ WL
k (9)

xU
pjkwe ≤ uU

kw, ∀p ∈ P, ∀j ∈ Jp, ∀k ∈ K, ∀w ∈ WU
k , ∀e ∈ E

(10)

xU
pjkwe ≤

∑︁
n∈N

𝛽pjn𝜉kwn, ∀p ∈ P, ∀j ∈ Jp, ∀k ∈ K,

∀w ∈ WU
k , ∀e ∈ E

(11)

xL
pjkw ≤

∑︁
n∈N

𝛽pjn𝜉kwn, ∀p ∈ P, ∀j ∈ Jp, ∀k ∈ K, ∀w ∈ WL
k

(12)

𝜉kwn ≥ 𝛾kwn, ∀k ∈ K, ∀w ∈ W, ∀n ∈ N (13)

∑︁
k∈K

©­­«
∑︁

w∈WL
k

xL
pjkw +

∑︁
w∈WU

k

∑︁
e∈E

xU
pjkwe

ª®®¬ ≤ 1, ∀p ∈ P, ∀j ∈ Jp (14)

∑︁
j∈J𝑝

tkwpjxL
pjkw ≤ Tk, ∀k ∈ K, ∀w ∈ WL

k (15)∑︁
j∈J𝑝

∑︁
e∈E

tkwpjxU
pjkwe ≤ Tk, ∀k ∈ K, ∀w ∈ WU

k (16)

∑︁
w∈WL

k

w
(
xL

pj1kw − xL
pj2kw

)
+ WL

k

©­­«
∑︁

w∈WL
k

xL
pj2kw − 1

ª®®¬ ≤ 0

∀k ∈ K, ∀p ∈ P, ∀j1, j2 ∈ J𝑝 , spj1j2 = 1

(17)



134 ZHAO et al.: MULTI-FACTORY REMANUFACTURING PROCESS OPTIMIZATION WITH DISCRETE BATTLE ROYALE OPTIMIZER

∑︁
w∈WU

k

(
w
(
xU

pj1kw1 − xU
pj2kw1

)
+
(
2WU

k − w
) (

xU
pj1kw2 − xU

pj2kw2

))
+ 2WU

k

©­­«
∑︁

w∈WU
k

∑︁
e∈E

xU
pj2kwe − 1

ª®®¬ ≤ 0, ∀k ∈ K, ∀p ∈ P,

∀j1, j2 ∈ Jp, spj1j2 = 1
(18)∑︁

w∈WL
k

xL
pj2kw ≤

∑︁
j1∈Jp

∑︁
w∈WL

k

sp 𝑗1 𝑗2 xL
pj1kw, ∀k ∈ K, ∀p ∈ P,

∀j2 ∈ J𝑝 , dp1j2 = 0
(19)

∑︁
w∈WU

k

∑︁
e∈E

xU
pj2kwe ≤

∑︁
j1∈Jp

∑︁
w∈WU

k

∑︁
e∈E

spj1j2 xU
pj1kwe, ∀k ∈ K,

∀p ∈ P, ∀j2 ∈ J𝑝 , dp1j2 = 0
(20)

∑︁
w∈WL

k

(
xL

pj1kw + xL
pj2kw

)
≤ 1, ∀k ∈ K, ∀p ∈ P,

∀j1, j2 ∈ Jp, rpj1j2 = 1
(21)

∑︁
w∈WU

k

∑︁
e∈E

(
xU

pj1kwe + xU
pj2kwe

)
≤ 1, ∀k ∈ K, ∀p ∈ P,

∀j1, j2 ∈ Jp, rpj1j2 = 1
(22)

zpk ∈ {0, 1} , ∀p ∈ P, ∀k ∈ K (23)

xL
pj1kw ∈ {0, 1} , ∀p ∈ P, ∀j ∈ Jp, ∀w ∈ WL

k , ∀k ∈ K (24)

xU
pj1kwe ∈ {0, 1} ,∀p ∈ P,∀j ∈ Jp, ∀w ∈ WU

k , ∀k ∈ K,

∀e ∈ E
(25)

yL
k ∈ {0, 1} , ∀k ∈ K (26)

yU
k ∈ {0, 1} , ∀k ∈ K (27)

uL
kw ∈ {0, 1} , ∀k ∈ K, ∀w ∈ WL

k (28)

uU
kw ∈ {0, 1} , ∀k ∈ K, ∀w ∈ WU

k (29)

𝜉kwn ∈ {0, 1} , ∀k ∈ K, ∀w ∈ Wk, ∀n ∈ N (30)

Tk ∈ R+, ∀k ∈ K (31)

Constraint (2) ensures that subassemblies obtained by disas-
sembling a product can be transported to only one manufactur-
ing factory. (3) ensures that each product may be allocated to
at most one disassembly facility. (4) ensures that only one type
of disassembly line can be turned on at a disassembly factory.
(5) ensures that each product can be assigned exclusively to
a disassembly facility that has been activated. (6) and (7)
ensure that the corresponding workstations are only used after
the disassembly line has been activated at the disassembly

factory. (8) ensures that a disassembly operation j for product
p is permitted to be allocated only to workstations that are
active in the disassembly plant to which product p has been
assigned. (9) and (10) ensure that the disassembly task j
of product p is assigned to the open workstation. (11) and
(12) ensure that the skills of the workers at the workstation
meet the skill constraints required for disassembly task j. (13)
ensure that the skills acquired by all workers are not reduced.
(14) specifies that every disassembly task is executed at most
once for each product. Collectively, (15) and (16) guarantee
that the total operational time at every workstation, across
all disassembly lines, remains within the designated factory
cycle time. Furthermore, (17) mandates that the assignment
of tasks to a linear disassembly line adheres to the predefined
precedence relationships.

(18) imposes a precedence constraint for task assignments
on a U-shaped disassembly line. It stipulates that for task 𝑗1
to precede 𝑗2, the workstation index of 𝑗2 must be greater than
or equal to that of 𝑗1 if both are on the inlet side, and less
than or equal if both are on the outlet side, thereby ensuring
the required execution sequence.

(19) and (20) ensure that the disassembly sequence of the
product can begin from other tasks. (21) and (22) ensure
that the assignment of disassembly tasks causes no conflict
among them. (23)-(31) indicate the range of values of decision
variables.

III. PROPOSED ALGORITHM

The Battle Royale Optimizer (BRO), introduced by Rahkar-
Farshi in 2020, is a population-based metaheuristic algorithm.
Its basic concept is inspired by the game PlayerUnknown’s
Battlegrounds (PUBG). In PUBG, there is a game mode called
Deathmatch, where players aim to kill as many other players as
possible until reaching the kill or time limit. Generally, battles
occur on specific battlefield maps chosen by the players [43],
[44], [45]. Such an optimization problem space is considered
as a game map in BRO. The game starts by having players
jump onto the map from an airplane. Similar to many other
population-based optimization algorithms, the search agents in
BRO are randomly initialized within the search space through
uniform random initialization. Throughout the game, if other
rivals kill a player, he respawns at a random zoon on the
battlefield. The ultimate winner is the player who gets the
most kills throughout the game. In this article, both soldiers
and players represent individuals.
A. Discrete Battle Royale Optimizer (DBRO)

BRO is originally used to solve continuous optimization
problems and needs its discrete version to solve MRPM that
is a discrete optimization problem. We propose DBRO to do
so.

In DBRO, the initial population is randomly distributed
across the entire problem space. Each individual randomly
searches for favorable positions and then attempts to inflict
damage on its nearest target. Each soldier has a damage level
with an initial value of zero. When a soldier gets injured,
its damage level increases, and it immediately changes its
current position to search for other favorable positions. If an



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 135

injured soldier can inflict damage on other soldiers in the next
iteration, its damage level is reset to zero. If an individual
soldier’s damage metric exceeds a preset limit, that soldier
is removed and reinitialized at a random feasible location
with its damage reset to zero. This cycle continues until
either a satisfactory solution is obtained or the iteration budget
is exhausted. To avoid premature convergence, we employ
a mutation-like restart: when the population’s best objective
value shows no improvement for a specified number of itera-
tions, the population is reinitialized. The DBRO procedure is
summarized in Algorithm 1.

Algorithm 1 Discrete Battle Royale Optimizer

Input: maximum iterations Max, population size n
Output: the best solution X
1: Initializing the soldier population
2: 𝑥𝑑𝑎𝑚 = the damage level of each soldier.
3: 𝑟𝑑𝑎𝑚 = combat rate
4: Calculate the fitness of each soldier
5: while (iter<Max) do
6: for each soldier do
7: Execute the search process to reach a new location
8: Generate random probability r
9: if r>𝑟𝑑𝑎𝑚 then

10: Execute combat process
11: 𝑥𝑑𝑎𝑚=𝑥𝑑𝑎𝑚+1
12: else
13: Soldiers continue the search process to reach a new

location
14: end if
15: if 𝑥𝑑𝑎𝑚>Threshold then
16: execute soldier rebirth process
17: end if
18: end for
19: Update X and record the optimal objective value
20: Decide whether to initialize the population
21: iter=iter+1
22: end while
23: return X

B. Encoding and Decoding
Effective encoding strategies are crucial because they de-

termine how information is transformed and encoded during
transmission, thus better addressing problems. Based on the
characteristics of MRPM, we expect the generated solution
to correspond accurately to an allocation plan during an
actual allocation process. In this problem, the selection of
disassembly factories and their internal disassembly lines,
allocation of workstations, the sequence of disassembly tasks
performed on the workstations all affect the objective value of
a solution. In order to better address the researched problem,
we design a four-stage encoding strategy 𝜎(𝜎1, 𝜎2, 𝜎3, 𝜎4) to
represent the solutions of MRPM. The encoding framework is
illustrated in Fig. 5. Specifically, 𝜎1 denotes the sequence of
disassembly tasks, 𝜎2 specifies the index of the disassembly
factory, 𝜎3 corresponds to the type of disassembly line within
the factory, where the value of 1 represents a linear line and
2 refers to a U-shaped configuration, and 𝜎4 indicates the

Fig. 5. Schematic graph of encoding structure.

workstation number. As depicted in Fig. 5, product 1 is allo-
cated to disassembly factory 1, whereas product 2 is assigned
to factory 2. Both factories employ U-shaped disassembly
lines. For product 1, task 1 is executed at workstation 1,
tasks 6 and 19 are performed at workstation 2, and task 29 is
handled at workstation 3. In the case of product 2, task 3 is
processed at workstation 1, while tasks 12 and 23 are allocated
to workstation 3.

During the decoding stage, the algorithm constructs a
feasible disassembly sequence by considering both conflict
constraints and precedence relations among tasks. Each task
within the sequence remains in a state awaiting allocation.
Taking the rigid caster as an example, the detailed decoding
procedure is illustrated in Fig. 5.

Step 1: Assign the EOL products to disassembly factories.
Step 2: Select the disassembly lines that factories activate

for EOL products.
Step 3: Assign disassembly tasks to workstations in order.

If a disassembly task is assigned to a workstation and exceeds
its cycle constraint, activate the next workstation and assign
the task to it for execution.



136 ZHAO et al.: MULTI-FACTORY REMANUFACTURING PROCESS OPTIMIZATION WITH DISCRETE BATTLE ROYALE OPTIMIZER

Fig. 6. Process of combat.

C. Initializing population
The initial population generally consists of multiple soldiers,

each of which represents a set of feasible solution encod-
ings. During the population initialization, a random-length
disassembly task sequence is formed. Subsequently, a task
sequence is made feasible by considering conflicts and prece-
dence relationships among the disassembly tasks. Each task
in a disassembly sequence is unallocated. Then, these EOL
products are allocated to various factories for disassembly. The
initialization process is given in the Supplementary File (S.F).

D. Combat and Search
Owing to the limitations of map size and available time,

soldiers must search for and attack opponents to secure
victory. During the search phase, soldiers may either enter
combat or successfully evade encounters. In the combat phase,
the algorithm employs a predefined combat rate. A random
number is generated to determine the outcome: if the random
value exceeds the combat rate, the soldier engages in battle;
otherwise, the soldier evades combat and continues searching.
The overall battle process is illustrated in Fig. 6.

Step 1: Select two ordinary soldiers.
Step 2: Randomly generate a set of binary masks, then

evaluate the value of each mask from left to right. A value of
0 indicates that the disassembly task is obtained from Soldier
1, while a value of 1 indicates that the disassembly task is
obtained from Soldier 2. If the acquired task already exists in
the new individual, we need to skip the current task and obtain
the next task from the selected soldier.

Step 3: Adjust the newly generated sequence to satisfy
conflict and precedence constraints.

For soldier search, we design four actions to better search
for the optimal solution, namely sequential variation, task
variation, workstation variation, and factory swap. The soldier
search process is given in the S.F.

Sequential variation: As illustrated in Fig. 7, task 13 is ran-
domly chosen. According to the task precedence constraints,
task 7 serves as its immediate predecessor, while task 17 is its
immediate successor. Consequently, task 13 can be reinserted
into any position between tasks 7 and 17.

Task variation: As shown in Fig. 8, task 10 is randomly
selected and subsequently removed together with its following
tasks. Referring to the AND/OR graph, the subassembly gen-
erated after completing task 10 is identified, and an alternative
disassembly route for this subassembly is selected, producing
tasks 8, 12, and 15.

Workstation variation: As presented in Fig. 9, a workstation
is randomly chosen. Then, either the first or last task within
that workstation is randomly determined. If the first task is

chosen, it is transferred to the previous workstation; if the last
task is chosen, it is moved to the next one.

Factory swap: As shown in Fig. 10, we randomly select the
disassembly factory to which two products belong and swap
them.

E. Rebirth Process

In DBRO, when a soldier’s damage level surpasses a pre-
defined threshold, the soldier is considered dead and respawns
randomly within the feasible solution space, with the damage
level reset to zero. The newly generated soldier is then
merged with the existing ones to form an updated population.
Afterward, the population is re-evaluated and ranked according
to individual fitness values, and the top-performing individuals
are retained for the next iteration.

Fig. 7. Process of sequential variation.

Fig. 8. Process of task variation.

Fig. 9. Process of workstation variation.



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 137

Fig. 10. Redistribution of disassembly factory.

IV. EXPERIMENTAL STUDIES

A. Experimental Cases and Parameter Settings
To verify the validity of the proposed model and evaluate

the performance of the algorithm, IBM CPLEX is utilized
to solve the experimental instances and obtain the opti-
mal solutions. The same instances are also solved using
DBRO for comparative analysis. All computations are exe-
cuted on a computer equipped with an Intel(R) Core(TM) i5-
8300H CPU (2.30 GHz) and 16.00 GB of RAM.

To ensure the comprehensiveness of the experimental anal-
ysis, four products of different sizes are selected, namely a
washing machine [46], a compass [47], a rigid caster [42],
and a radio [48]. We combine these products into different
multiple product cases for testing. The scale information for
the combined case and the parameter settings for the disas-
sembly factories are given in the S.F. Table I shows detailed
information about EOL products. Take the rigid caster as an
example. It consists of 9 parts and involves 32 disassembly
tasks. Disassembling it yields 25 subassemblies, with profits
ranging from 53 to 75. The transportation cost falls between 6
and 20, while the disassembly cost per unit time ranges from
2 to 7. The completion time for the disassembly tasks ranges
from 5 to 8.
B. Model Validation and Analysis

In our experimental setup, we employed IBM CPLEX
with a maximum runtime limit of three hours to evaluate
the test cases. The results are shown in Table II, where the
column of factory number represents the disassembly factory
assigned to the product, and w, c, r, and d, respectively stand
for washing machine, compass, rigid caster, and radio. The
column of disassembly line represents the type of disassembly
line activated by the factory. Taking case 4 as an example, the
washing machine is allocated to factory 1, and rigid caster 1
and rigid caster 2 are assigned to factory 3 for disassembly.
Factories 1 and 3 activate a U-shaped disassembly line. The
column of profit represents the objective value corresponding
to this disassembly sequence, and the best bound indicates
the range of values of feasible solutions. The column of gap
represents the gap between the current solution and the best
one. When solving a problem with CPLEX, the objective value
gradually approaches the best bound. When the gap reaches
0, it indicates that the current solution is the optimal solution.
The column of calculation time indicates the time required
to solve. It can be seen that CPLEX is not very efficient in
solving this problem due to the complexity of the model and
the high dimensionality of the decision variables. For cases

1-4, CPLEX can find the optimal solution, but the required
computation time grows very fast as the case size increases.
For some multi-product cases, the optimal solution cannot be
obtained within the set time of three hours. As the problem
size increases, the gap between the current solution and the
best bound becomes more pronounced.

DBRO is applied to the aforementioned cases, and the
experimental results are summarized in Table III. As observed
from Table III, DBRO achieves markedly shorter runtimes
compared with CPLEX. Its runtime is mainly influenced by its
time complexity, and the increase in the scale of the cases does
not result in a substantial increase in time. From Tables IV and
V, we can see that for cases 1-4, where CPLEX can find the
optimal solution, DBRO can do so as well and has smaller
running time. For cases 5-8, where CPLEX gives feasible
solutions, the algorithm can find higher-quality solutions faster.

Table V compares the differences between DBRO and
CPLEX regarding the optimal objective value and runtime.
We can observe that for small to medium-sized instances,
DBRO is significantly faster than CPLEX, and its solution
accuracy is close to that of CPLEX. For large-scale instances
or highly complex solutions, CPLEX may fail to reach the
optimal solution within the allocated time, providing only
feasible solutions. In such cases, DBRO demonstrates supe-
rior performance over CPLEX in both solution quality and
computational efficiency.

C. Case Study
MRPM solutions are impacted by various factors, such as

the prices charged by different manufacturing factories for the
subassemblies, the costs required to complete the disassembly
tasks in different disassembly factories, the costs of opening
the factory workstations, and the transportation costs between
factories, and so forth. Therefore, we select case 5 for our
case study. Products w and c are allocated to factory 1,
while product r is assigned to factory 3. The subassemblies
obtained from disassembling product w, such as 2, 8, 14,
and 15, are transported to manufacturing factory 1, while
subassemblies 11 and 13 are transported to manufacturing
factory 2. For product c, subassemblies 7, 13, and 16 obtained
from disassembly are shipped to manufacturing factory 1,
while subassemblies 14, 15, 17, and 18 are sent to manufac-
turing factory 2. Lastly, subassemblies 20, 22, and 24 obtained
from disassembling product r are transported to manufacturing
factory 1, and subassemblies 12, 21, and 23 are shipped to
manufacturing factory 3. Disassembly factory 1 activates the
U-shaped disassembly line and assigns tasks 1, 10, and 26 to
workstation 1, tasks 2, 5, and 28 to workstation 2, tasks 11 and
21 to workstation 3, and tasks 18, 23, and 24 to workstation
5. Disassembly factory 3 activates a linear disassembly line,
where tasks 1 and 6 are assigned to workstation 3 and tasks
19 and 29 to workstation 5.

The detailed assignment diagram for Case 5 is available in
the S.F.

D. Verification of Algorithm With Different Scales of Cases
A population-based intelligence algorithm has a stochastic

nature. To verify the superiority of DBRO, we select DMBO,
FOA, DOA, and GA to conduct experimental case tests. For



138 ZHAO et al.: MULTI-FACTORY REMANUFACTURING PROCESS OPTIMIZATION WITH DISCRETE BATTLE ROYALE OPTIMIZER

TABLE I Product Parameters

Product Num. of
parts

Num. of
task

Num of
subassembly Subassembly profit Transport cost Disassembly cost Disassembly time

Washing machine 6 13 15 96 ∼ 139 12 ∼ 29 3 ∼ 8 4 ∼ 11
Compass 7 15 18 26 ∼ 56 2 ∼ 10 1 ∼ 5 4 ∼ 6

Rigid caster 9 32 25 53 ∼ 75 6 ∼ 20 2 ∼ 7 5 ∼ 8
Radio 10 30 29 69 ∼ 98 7 ∼ 23 2 ∼ 6 5 ∼ 7

The number of parts, tasks, and units for disassembling the product are all in units. The profit of parts, transportation costs, and dismantling costs are all
in yuan. The unit of disassembly time is seconds.

TABLE II CPLEX Solutions

Case ID Assignment of product to factory Assignment of line type Profit(Best Bound) Gap Calculation time

1 {r} → 3 < 3, L > 228 (228) 0.00% 4.1s
2

{
w1 , w2

}
→ 2 < 2, U > 917 (917) 0.00% 7.5s

3
{
c1

}
→ 1,

{
c2 , r1

}
→ 3 < 1, L >, < 3, U > 674 (674) 0.00% 562.5s

4 {w} → 1,
{
r1 , r2

}
→ 3 < 1, U >, < 3, U > 937 (937) 0.00% 9236.4s

5 {w,c,r} → 1 < 1, U > 898 (985) 8.83% 10800.0s
6 {w,d} → 1, {r} → 2 < 1, U >, < 2, L > 1186 (1288) 7.92% 10800.0s
7 {w,c,r} → 1, {d} → 3 < 1, U >, < 3, U > 1413 (1598) 11.58% 10800.0s
8 {w,c} → 1,

{
r1 , r2 , d

}
→ 3 < 1, U >, < 3, U > 1682 (1840) 9.41% 10800.0s

TABLE III DBRO Solutions

Case ID Iterations / Population Assignment of product to factory Assignment of line type Profit Calculation time

1 200 / 100 {r} → 3 < 3, U > 228 0.21s
2 200 / 100

{
r, w1 , w2

}
→ 1 < 1, L > 917 0.56s

3 300 / 150
{
c1 , c2

}
→ 2, {r} → 3 < 2, L >, < 3, U > 674 1.55s

4 300 / 150 {w} → 1,
{
r1 , r2

}
→ 2 < 1, U >, < 2, U > 937 1.87s

5 400 / 200 {w,c} → 1, {r} → 3 < 1, U >, < 3, L > 922 3.14s
6 400 / 200 {w,d} → 1, {r} → 3 < 1, U >, < 3, U > 1214 3.65s
7 400 / 200 {w,c} → 1, {r,d} → 2 < 1, U >, < 2, U > 1484 3.38s
8 400 / 200

{
w,c,r1

}
→ 2,

{
r2 , d

}
→ 3 < 2, U >, < 3, U > 1703 3.73s

TABLE IV Algorithm Performance Comparison

Case ID Optimal Hit rate Calculation time(s)

DBRO DMBO FOA DOA GA DBRO DMBO FOA DOA GA DBRO DMBO FOA DOA GA

1 228 228 228 228 228 100% 100% 100% 90% 95% 0.21 0.27 0.34 0.16 0.11
2 917 917 917 917 917 60% 55% 60% 45% 35% 0.56 1.29 1.74 0.58 0.32
3 674 674 674 674 674 55% 30% 25% 20% 35% 1.55 2.38 2.89 1.34 0.87
4 937 935 935 933 933 35% 30% 25% 20% 40% 1.87 2.51 2.92 1.54 0.87
5 922 918 920 915 892 35% 30% 25% 15% 20% 3.24 4.67 5.21 2.86 1.75
6 1214 1210 1197 1203 1181 45% 40% 45% 20% 25% 3.65 4.22 6.34 3.24 1.98
7 1484 1475 1479 1468 1471 30% 25% 30% 25% 10% 3.38 4.71 5.95 2.72 1.89
8 1703 1703 1693 1682 1687 35% 15% 25% 15% 20% 3.73 4.78 6.38 3.53 1.96

each algorithm and case, we conduct 20 independent experi-
ments, record the best objective value for each generation, and
calculate the average of these objective values. Based on the
averages, we plot the iteration curves for each algorithm. The
iterator curves for case 5-8 are given in the S.F. Combining
the iteration curves for the four cases, it can be observed that
DBRO exhibits faster convergence and higher solution quality
than its four peers.

To further evaluate the stability of these algorithms, the
best and worst solutions obtained from 20 independent runs
of each algorithm are recorded, with the results presented in
the Supplementary Files. It can be seen that DBRO achieves

a higher upper bound compared to the other algorithms.
Moreover, its minimum and average values are also higher,
demonstrating that it maintains strong stability across these
scenarios.

Table IV presents the optimal solutions, hit rates, and
average calculation times achieved by each algorithm. The hit
rate is calculated as the proportion of times each algorithm
obtains the optimal solution in 20 experiments. From the
results in Table IV, it can be observed that for small-scale
situations, such as case 1, DBRO consistently achieves the
optimal solution and has a faster solving speed than CPLEX.
As the case scale increases, the algorithm’s stability gradually



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 139

TABLE V Comparison of Results Between CPLEX and
DBRO

Case ID Profit Calculation time

CPLEX DBRO Increased by CPLEX DBRO Reduced by

1 228 228 0.00% 4.1s 0.21s 94.88%
2 917 917 0.00% 7.5s 0.56s 92.53%
3 674 674 0.00% 562.5s 1.55s 99.72%
4 937 937 0.00% 9236.4s 1.87s 99.98%
5 898 922 2.60% 10800.0s 3.24s 99.97%
6 1186 1214 2.31% 10800.0s 3.65s 99.97%
7 1413 1484 4.78% 10800.0s 3.38s 99.97%
8 1682 1703 1.23% 10800.0s 3.73s 99.97%

decreases, meaning that it cannot consistently obtain the same
optimal value in repeated experiments. The hit rates of DBRO
and DMBO are better than the other three algorithms, while
the running speed follows the order: GA > DOA > DBRO
> DMBO > FOA. In summary, DBRO outperforms the other
four algorithms regarding solution quality. Regarding running
efficiency, DBRO is superior to DMBO and FOA, while there
is not much difference with GA and DOA. Therefore, DBRO
is more suitable for solving MRPM.

V. CONCLUSION

The optimization of multi-factory remanufacturing pro-
cesses is a prominent research topic within supply chain
management. In this study, we introduce the MRPM problem
for the first time and formulate it as a mixed-integer program
with the objective of maximizing profit. To solve this problem,
DBRO is proposed, featuring a novel encoding scheme to
represent candidate solutions. Moreover, four soldier search
strategies are integrated into DBRO to enhance solution ex-
ploration and avoid entrapment in local optima. IBM CPLEX
is employed to solve the model and verify its validity. The
performance of DBRO is benchmarked against four other in-
telligent optimization algorithms, showing superior efficiency
in addressing this problem.

Our future plans involve 1) incorporating other factors into
the problem, e.g., a human worker’s physical exertion and
fatigue index; and 2) exploring other intelligent optimization
algorithms and reinforcement learning to cope with the con-
cerned problems [49].

REFERENCES

[1] Q. Zhang, Y. Xing, C. Zhang, X. Sun, B. Hu, and A. Das, “Column
generation algorithms for two-dimensional cutting problem with surface
defects,” International Journal of Artificial Intelligence and Green
Manufacturing, vol. 1, no. 2, pp. 23–35, June 2025.

[2] L. Zhou, H. Zhu, and B. Akbari, “Multi-objective optimization of multi-
factory remanufacturing process considering worker fatigue,” Interna-
tional Journal of Artificial Intelligence and Green Manufacturing, vol. 1,
no. 2, pp. 36–50, June 2025.

[3] H. Zhang, D. Pham, and Q. Kang, “Improved fruit fly algorithm for
multi-objective disassembly line balancing problem considering learn-
ing effect,” International Journal of Artificial Intelligence and Green
Manufacturing, vol. 1, no. 2, pp. 51–62, June 2025.

[4] H. K. Chan, S. H. Chung, and T. M. Chan, “Combining genetic approach
and integer programming to solve multi-facility economic lot-scheduling
problem,” Journal of Intelligent Manufacturing, vol. 23, pp. 2397–2405,
2012.

[5] F. Zhao, R. Ma, and L. Wang, “A self-learning discrete jaya algorithm
for multiobjective energy-efficient distributed no-idle flow-shop schedul-
ing problem in heterogeneous factory system,” IEEE Transactions on
Cybernetics, vol. 52, no. 12, pp. 12 675–12 686, 2021.

[6] J. Behnamian and S. Fatemi Ghomi, “A survey of multi-factory schedul-
ing,” Journal of Intelligent Manufacturing, vol. 27, pp. 231–249, 2016.

[7] J. Behnamian and S. F. Ghomi, “The heterogeneous multi-factory
production network scheduling with adaptive communication policy and
parallel machine,” Information Sciences, vol. 219, pp. 181–196, 2013.

[8] A. M. Khedr and W. Osamy, “Minimum perimeter coverage of query
regions in a heterogeneous wireless sensor network,” Information Sci-
ences, vol. 181, no. 15, pp. 3130–3142, 2011.

[9] X. Zhang, W. K. Cheung, and C. Li, “Learning latent variable models
from distributed and abstracted data,” Information Sciences, vol. 181,
no. 14, pp. 2964–2988, 2011.

[10] M. Ziaee, “A heuristic algorithm for the distributed and flexible job-
shop scheduling problem,” The Journal of Supercomputing, vol. 67, pp.
69–83, 2014.

[11] H.-C. Chang and T.-K. Liu, “Optimisation of distributed manufacturing
flexible job shop scheduling by using hybrid genetic algorithms,” Journal
of Intelligent Manufacturing, vol. 28, pp. 1973–1986, 2017.

[12] H. Jia, A. Y. Nee, J. Y. Fuh, and Y. Zhang, “A modified genetic
algorithm for distributed scheduling problems,” Journal of Intelligent
Manufacturing, vol. 14, pp. 351–362, 2003.

[13] X. Guo, Z. Bi, J. Wang, S. Qin, S. Liu, and L. Qi, “Reinforcement
learning for disassembly system optimization problems: A survey,”
International Journal of Network Dynamics and Intelligence, pp. 1–14,
2023.

[14] S. Qin, J. Li, J. Wang, X. Guo, S. Liu, and L. Qi, “A salp swarm
algorithm for parallel disassembly line balancing considering workers
with government benefits,” IEEE Transactions on Computational Social
Systems, 2023.

[15] S. Dai, Z. Zhang, W. Wang, C. Li, J. Parron, and E. Herrera, “Human-
robot collaborative disassembly profit maximization via improved grey
wolf optimizer,” International Journal of Artificial Intelligence and
Green Manufacturing, vol. 1, no. 2, pp. 12–22, 2025.

[16] X. Cui, X. Guo, M. Zhou, J. Wang, S. Qin, and L. Qi, “A discrete
whale optimization algorithm for disassembly line balancing with carbon
emission constraint,” IEEE Robotics and Automation Letters, 2023.

[17] X. Guo, T. Wei, J. Wang, S. Liu, S. Qin, and L. Qi, “Multiobjective u-
shaped disassembly line balancing problem considering human fatigue
index and an efficient solution,” IEEE Transactions on Computational
Social Systems, 2022.

[18] S. Dai, Y. Feng, Z. Zhang, X. Guo, S. Qin, Q. Kang, and Y. Liu, “Solving
disassembly and assembly line balancing problem with robot direction
switching,” in 2025 37th Chinese Control and Decision Conference
(CCDC), IEEE. Xiamen, China: IEEE, may 2025, pp. 896–901.

[19] Y. Feng, S. Dai, Z. Zhang, X. Guo, S. Qin, Q. Kang, and Y. Liu, “A
disassembly and assembly line balancing problem via an improved dou-
ble q-learning,” in 2025 37th Chinese Control and Decision Conference
(CCDC). IEEE, 2025, pp. 890–895.

[20] C. B. Kalayci, A. Hancilar, A. Gungor, and S. M. Gupta, “Multi-
objective fuzzy disassembly line balancing using a hybrid discrete
artificial bee colony algorithm,” Journal of Manufacturing Systems,
vol. 37, pp. 672–682, 2015, reverse Supply Chains.

[21] S. Qin, S. Zhang, J. Wang, S. Liu, X. Guo, and L. Qi, “Multi-
objective multi-verse optimizer for multi-robotic u-shaped disassembly
line balancing problems,” IEEE Transactions on Artificial Intelligence,
2023.

[22] Z. Li, I. Kucukkoc, and Z. Zhang, “Iterated local search method and
mathematical model for sequence-dependent u-shaped disassembly line
balancing problem,” Computers Industrial Engineering, vol. 137, p.
106056, 2019.

[23] F.-A. G. La Forme, V. B. Genoulaz, and J.-P. Campagne, “A framework
to analyse collaborative performance,” Computers in Industry, vol. 58,
no. 7, pp. 687–697, 2007.

[24] C. Blum and C. Miralles, “On solving the assembly line worker
assignment and balancing problem via beam search,” Computers &
Operations Research, vol. 38, no. 1, pp. 328–339, 2011.

[25] T. Zaman, S. K. Paul, and A. Azeem, “Sustainable operator assignment
in an assembly line using genetic algorithm,” International Journal of
Production Research, vol. 50, no. 18, pp. 5077–5084, 2012.

[26] M. K. Oksuz, K. Buyukozkan, and S. I. Satoglu, “U-shaped assembly
line worker assignment and balancing problem: A mathematical model
and two meta-heuristics,” Computers & Industrial Engineering, vol. 112,
pp. 246–263, 2017.



140 ZHAO et al.: MULTI-FACTORY REMANUFACTURING PROCESS OPTIMIZATION WITH DISCRETE BATTLE ROYALE OPTIMIZER

[27] I. Belassiria, M. Mazouzi, S. ELfezazi, A. Cherrafi, and Z. ELMaskaoui,
“An integrated model for assembly line re-balancing problem,” Interna-
tional Journal of Production Research, vol. 56, no. 16, pp. 5324–5344,
2018.

[28] S. M. McGovern and S. M. Gupta, “A balancing method and genetic
algorithm for disassembly line balancing,” European journal of opera-
tional research, vol. 179, no. 3, pp. 692–708, 2007.

[29] Y. Feng, M. Zhou, G. Tian, Z. Li, Z. Zhang, Q. Zhang, and J. Tan,
“Target disassembly sequencing and scheme evaluation for cnc machine
tools using improved multiobjective ant colony algorithm and fuzzy in-
tegral,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 49, no. 12, pp. 2438–2451, 2018.

[30] Y. Fu, M. Zhou, X. Guo, L. Qi, and K. Sedraoui, “Multiverse optimiza-
tion algorithm for stochastic biobjective disassembly sequence planning
subject to operation failures,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 52, no. 2, pp. 1041–1051, 2021.

[31] X. Guo, C. Fan, M. Zhou, S. Liu, J. Wang, S. Qin, and Y. Tang, “Human–
robot collaborative disassembly line balancing problem with stochastic
operation time and a solution via multi-objective shuffled frog leaping
algorithm,” IEEE Transactions on Automation Science and Engineering,
2023.

[32] T. Rahkar Farshi, “Battle royale optimization algorithm,” Neural Com-
puting and Applications, vol. 33, no. 4, pp. 1139–1157, 2021.

[33] Z. Cao, C. Lin, M. Zhou, C. Zhou, and K. Sedraoui, “Two-stage genetic
algorithm for scheduling stochastic unrelated parallel machines in a
just-in-time manufacturing context,” IEEE Transactions on Automation
Science and Engineering, vol. 20, no. 2, pp. 936–949, 2022.

[34] E. Duman, M. Uysal, and A. F. Alkaya, “Migrating birds optimization: a
new metaheuristic approach and its performance on quadratic assignment
problem,” Information Sciences, vol. 217, pp. 65–77, 2012.

[35] H. Peraza-Vázquez, A. F. Peña-Delgado, G. Echavarrı́a-Castillo, A. B.
Morales-Cepeda, J. Velasco-Álvarez, and F. Ruiz-Perez, “A bio-inspired
method for engineering design optimization inspired by dingoes hunting
strategies,” Mathematical Problems in Engineering, vol. 2021, pp. 1–19,
2021.

[36] Y. Fu, M. Zhou, X. Guo, and L. Qi, “Stochastic multi-objective in-
tegrated disassembly-reprocessing-reassembly scheduling via fruit fly
optimization algorithm,” Journal of Cleaner Production, vol. 278, p.
123364, 2021.

[37] J. Wang, “Petri nets for dynamic event-driven system modeling.” Hand-
book of Dynamic System Modeling, vol. 1, p. 24, 2007.

[38] ——, “Charging information collection modeling and analysis of GPRS
networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 37, no. 4, pp. 473–481, 2007.

[39] R. J. Riggs, O. Battaı̈a, and S. J. Hu, “Disassembly line balancing
under high variety of end of life states using a joint precedence graph
approach,” Journal of Manufacturing Systems, vol. 37, pp. 638–648,
2015.

[40] J. Wang and D. Li, “Resource oriented workflow nets and workflow
resource requirement analysis,” International Journal of Software En-
gineering and Knowledge Engineering, vol. 23, no. 05, pp. 677–693,
2013.

[41] Z. Diri Kenger, Ç. Koç, and E. Özceylan, “Integrated disassembly line
balancing and routing problem,” International Journal of Production
Research, vol. 58, no. 23, pp. 7250–7268, 2020.

[42] M. L. Bentaha, A. Dolgui, O. Battaı̈a, R. J. Riggs, and J. Hu, “Profit-
oriented partial disassembly line design: dealing with hazardous parts
and task processing times uncertainty,” International Journal of Produc-
tion Research, vol. 56, no. 24, pp. 7220–7242, 2018.

[43] T. Akan, S. Agahian, and R. Dehkharghani, “Binbro: Binary battle royale
optimizer algorithm,” Expert Systems with Applications, vol. 195, p.
116599, 2022.

[44] S. Akan and T. Akan, “Battle royale optimizer with a new movement
strategy,” in Handbook of Nature-Inspired Optimization Algorithms: The
State of the Art: Volume I: Solving Single Objective Bound-Constrained
Real-Parameter Numerical Optimization Problems. Springer, 2022, pp.
265–279.

[45] T. Akan, S. Agahian, and R. Dehkharghani, “Battle royale optimizer
for solving binary optimization problems,” Software Impacts, vol. 12, p.
100274, 2022.

[46] P. Nowakowski, “A novel, cost efficient identification method for disas-
sembly planning of waste electrical and electronic equipment,” Journal
of Cleaner Production, vol. 172, pp. 2695–2707, 2018.

[47] M. L. Bentaha, O. Battaı̈a, and A. Dolgui, “A sample average approxima-
tion method for disassembly line balancing problem under uncertainty,”
Computers & Operations Research, vol. 51, pp. 111–122, 2014.

[48] Q. Lu, Y. Ren, H. Jin, L. Meng, L. Li, C. Zhang, and J. W. Sutherland, “A
hybrid metaheuristic algorithm for a profit-oriented and energy-efficient
disassembly sequencing problem,” Robotics and Computer-Integrated
Manufacturing, vol. 61, p. 101828, 2020.

[49] Y. Tian, G. Liu, J. Wang, and M. Zhou, “ASA-GNN: Adaptive sam-
pling and aggregation-based graph neural network for transaction fraud
detection,” IEEE Transactions on Computational Social Systems, vol. 11,
no. 3, pp. 3536–3549, 2024.

Ziyan Zhao (Member, IEEE) Received his B.s, M.s.,
and Ph.D. degrees in 2015, 2017, and 2021, respec-
tively, from the College of Information Science and
Engineering, Northeastern University, Shenyang,
China, where he is currently working as an Assistant
Professor. From October 2018 to October 2020, he
studied as a visiting Ph.D. student in the Department
of Electrical and Computer Engineering, New jer-
sey Institute of Technology, Newark,NJ, UsA. His
research focuses on intelligent manufacturing, in-
telligent optimization algorithm, industrial big data,

and production planning and scheduling. Till now, he has published over
30 international journal and conference papers in the above areas. His
research focuses on intelligent decision-making, intelligent warehousing, and
production planning and scheduling. Till now, he has published over 30 papers
in the above areas.

LiangBo Zhou Graduated from Jiangsu University
of Science and Technology in 2022 with a bachelor’s
degree in Internet of Things Engineering. Graduated
from Liaoning Petrochemical University in 2025
with a master’s degree in Artificial Intelligence.
Currently working in the Development and Reform
Bureau of Congjiang County, Congjiang, China.


	Introduction
	Problem Description
	Problem Statement
	AND/OR Graph
	Notations
	Mathematical Model

	Proposed Algorithm
	Discrete Battle Royale Optimizer (DBRO)
	Encoding and Decoding
	Initializing population
	Combat and Search
	Rebirth Process

	Experimental Studies
	Experimental Cases and Parameter Settings
	Model Validation and Analysis
	Case Study
	Verification of Algorithm With Different Scales of Cases

	Conclusion
	References
	Biographies
	Ziyan Zhao
	LiangBo Zhou


