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Mixed-Layout Multi-Type Factory Remanufacturing
System Optimization via LLM-TD3

Xiwang Guo, Yujie Feng and Mengchu Zhou

Abstract—This work presents a mixed-layout, multi-type fac-
tory remanufacturing system optimization problem that con-
siders both linear and U-shaped disassembly lines, with the
goal of maximizing profit, and formulates its corresponding
mathematical model. Its solution has four stages: product alloca-
tion, disassembly line selection, task allocation, and component
transportation. Based on the characteristics of each stage, Large
Language Model (LLM) is responsible for product allocation and
disassembly line selection, while Twin Delayed Deep Determin-
istic Policy Gradient optimizes task allocation and component
transportation according to the LLM’s results. By providing
the estimated profits of products under different factory and
disassembly line configurations and designing tailored action-
state space, the proposed method interacts with the environment
to solve the problem. By using various experimental cases, we
compare it with CPLEX, Deep Deterministic Policy Gradient,
Soft Actor-Critic, and Advantage Actor-Critic to verify its fea-
sibility and effectiveness, demonstrating its potential as a novel
solution method.

Key Words—Large language models, twin delayed deep deter-
ministic policy gradient, remanufacturing optimization, mixed
integer programming, Petri nets.

I. INTRODUCTION

AGAINST the backdrop of accelerating global indus-
trialization, resources are being increasingly depleted

while the pressure on the ecological environment continues to
escalate. Under these circumstances, the traditional linear eco-
nomic model of ’extraction-production-disposal’ has become
inadequate to meet current industrial requirements. With the
deep integration of a global industrial chain and continuous
expansion of economic scale, the shortage of raw materials
and surge in waste have become the main bottlenecks restrict-
ing sustainable development, forcing academic and industrial
communities to examine the transformation path of production
models.

Under this circumstance, the concepts of circular economy
and green manufacturing have gradually taken shape. The
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former, with the core principle of maximizing resource uti-
lization and minimizing carbon emissions, promotes closed-
loop material flow. The latter, on the other hand, integrates
the concept of environmental friendliness throughout the entire
life cycle of a product, from design, production, and use to re-
cycling. Together, they form a solid foundation for sustainable
development.

In the context of this macrotrend, as a key practice linking
circular economy and green manufacturing, remanufacturing
has become a focal area of global industrial transformation.
By systematically disassembling, inspecting, repairing, and
upgrading used products, remanufacturing achieves the dual
goals of resource regeneration and value reshaping, bringing
the technical performance and reliability of these products
to or even beyond the standards of new ones. Compared to
traditional manufacturing, remanufacturing offers significant
synergistic benefits in alleviating resource constraints, reduc-
ing production cost, and protecting the ecological environment.
As a result, it provides a viable solution for the global manu-
facturing industry to tackle the dual challenges of development
and environmental protection.

In recent years, with the rapid development of artificial in-
telligence and machine learning technologies, the combination
of Large Language Models (LLMs) and deep reinforcement
learning algorithms has provided new ideas and methods for
solving complex optimization problems [1]. LLMs can offer
efficient modeling and decision-making support for optimiza-
tion problems through their natural language processing and
simulated logical reasoning capabilities [2, 3]. Meanwhile, the
Twin Delayed Deep Deterministic Policy Gradient (TD3) algo-
rithm, through its reinforcement learning mechanism [4, 5, 6],
is able to learn optimal strategies in dynamic environments,
thereby achieving optimization of complex systems [7, 8, 9].
The integration of these two technologies is expected to offer
a new solution for the optimization problem of mixed-line
layout and multi-type factory remanufacturing systems.

The LLM-based TD3 strategy has opened up new ways
to handle the remanufacturing adjustment issues of various
factories. With its excellent data processing and pattern recog-
nition capabilities [10, 11, 12], LLM can simulate and eval-
uate complicated remanufacturing production processes. As a
cutting-edge reinforcement learning technique, TD3 is capable
of properly addressing the challenges of continuous action
spaces and high-dimensional state space, and it features good
stability and fast convergence [13, 14, 15]. The combination
of LLM and TD3 can fully utilize the strengths of both,
thereby improving the efficiency and accuracy in solving our
concerning optimization problem.
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The contributions of this work are as follows.
1) This work combines LLM with TD3 to solve a newly

proposed optimization problem of remanufacturing in mixed-
line layout and multi-type factories.

2) It establishes a mathematical model aimed at the maxi-
mizing revenue of a remanufacturing system. The correctness
of the model is verified by using CPLEX as a commercially
available solver.

3) The designed LLM-TD3 algorithm is compared with
TD3, Deep Deterministic Policy Gradient (DDPG), Advantage
Actor-Critic (A2C), and Soft Actor-Critic (SAC). The results
show that it has more advantages than its peers in solving the
proposed optimization problem.

The remainder of this paper is organized as follows: Sec-
tion II describes the problem. Section III elaborates on the
proposed algorithm. Section IV presents the experimental
results and analysis. Finally, Section V concludes the work
and discusses directions for future work.

II. PROBLEM DESCRIPTION

A. Problem Statement

This work studies a Mixed-layout multi-type factory Re-
manufacturing system Optimization Problem (MROP), aim-
ing to maximize the profit while considering the technical
capabilities of different disassembly factories and the choice
of disassembly line layouts [16]. Each disassembly factory
can choose either a linear or U-shaped disassembly line to
dismantle products, and the choice of layout affects both
disassembly efficiency and cost [17, 18, 19]. In addition,
the technical capabilities of each factory limit the types of
products it can process. Therefore, the optimization problem
needs to consider both technical capability matching and
disassembly line layout selection to achieve the maximum
profit. Fig. 1 shows the overall framework of MROP.

A MROP extends the conventional multi-type factory re-
manufacturing optimization problem in [20, 21, 22] by con-
sidering different disassembly lines operated disassembly fac-
tories. Its includes the following four key issues:

1) Product allocation
Optimization MROP encompasses a network of multiple

disassembly factories, each one being uniquely equipped with
a distinct set of disassembly technologies. It is these specific
technologies that dictate the range of products a particular
factory is capable of handling. The disassembly of certain
highly complex products may necessitate the use of advanced
and specialized technologies, which may not be available
across all factories. Consequently, the allocation process is
of paramount importance, as it must meticulously ensure that
the technical capabilities of a factory are in precise alignment
with the technical prerequisites of the tasks assigned to it. In
the context of this study, disassembly factories are categorized
based on distinct types of disassembly technologies. Products
are then assigned to factories that possess the requisite tech-
nical capabilities to meet their specific disassembly needs.

In order to describe the problem more clearly, we have
established two matrices.

Fig. 1. Framework of the MROP.

1) Product-technology association matrix Θ = [𝜃𝑝𝑛] de-
scribes the relationship between product 𝑝 and disassembly
technology 𝑛.

𝜃𝑝𝑛 =


1, disassembling product 𝑝 requires

technology 𝑛.
0, otherwise.

2) Factory-technology association matrix 𝑌 = [𝛿𝑘𝑛] de-
scribes the relationship between disassembly factory 𝑘 and
disassembly technology 𝑛.

𝛿𝑘𝑛 =

{
1, disassembly factory 𝑘 has technology 𝑛.
0, otherwise.

2) Selection of disassembly lines
Each disassembly factory has the option to select either a

linear or U-shaped disassembly line for processing products.
linear layouts are particularly well-suited for handling simple
and continuous tasks, whereas U-shaped layouts are more
advantageous for dealing with complex disassembly scenarios
that involve multiple tasks. The choice of layout has a signif-
icant impact on disassembly efficiency, cost, and workstation
utilization.

3) Task scheduling
The assignment of product disassembly tasks to worksta-

tions must be carried out in an efficient manner. This process
takes into account a variety of factors, including the duration
of a task, its priority level, and any potential conflicts, such
as the differing amounts of time required to dismantle each
specific task. By considering these factors, it ensures that
each workstation is allocated sufficient time to successfully
complete the tasks assigned to it [23].

4) Component transportation
The transportation of disassembled components from disas-

sembly factories to remanufacturing factories should be well
planned to maximize profitability. This process must carefully
consider the recovery value of components at various re-
manufacturing sites and transportation costs incurred between
disassembly and remanufacturing factories [24, 25, 26].

The following is the correlation matrices are required to
describe our problem:
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1) Incidence matrix 𝐴 = [𝛼𝑝𝑖 𝑗 ] describes the relationship
between components and disassembly tasks, where 𝑖 means
the 𝑖-th components, 𝑗 disassembly the 𝑗-th task and 𝑝 the
𝑝-th product.

𝛼𝑝𝑖 𝑗 =



1, if component 𝑖 of product 𝑝 is obtained
by task 𝑗 .

−1, if component 𝑖 of product 𝑝 is
disassembled by task 𝑗 .

0, otherwise.

2) Precedence matrix 𝐵 = [𝛽𝑝 𝑗 𝑗′ ] describes the relationship
between two tasks, where 𝑗 and 𝑗 ′ represent disassembly tasks.

𝛽𝑝 𝑗 𝑗′ =


1, if task 𝑗 must be executed before task 𝑗 ′

to disassemble product 𝑝.
0, otherwise.

3) Conflict matrix 𝚪 = [𝛾𝑝 𝑗 𝑗′ ] describes the conflict
between two tasks, 𝑗 and 𝑗 ′.

𝛾𝑝 𝑗 𝑗′ =


1, if task 𝑗 and task 𝑗 ′ to disassemble product 𝑝 are

in conflict.
0, otherwise.

B. Petri Nets

A Petri net is a mathematical tool for modeling and an-
alyzing discrete event systems, widely used in fields such
as production systems, computer science, and communication
networks [27, 28, 29, 30, 31]. It describes system state changes
and event triggering in a graphical manner, capable of intu-
itively representing system characteristics such as concurrency,
synchronization, and resource sharing [32, 33]. It consists of
places, transitions, arcs, and tokens. Places represent the states
or resources of the system, typically depicted as circles. Transi-
tions represent events or actions in the system, typically shown
as vertical lines or rectangles. Arcs represent the relationships
between places and transitions, indicated by arrows, with the
direction of the arrows showing the flow direction of tokens.
Tokens represent the availability of resources or the occurrence
of events, and the presence and flow of tokens indicate state
changes in the system.

Petri nets are applied to disassembly systems for modeling
and analyzing disassembly processes [34, 35]. A DPN con-
sists of tokens, places, transitions, and arcs. Tokens represent
the availability of products, components, or subcomponents.
Places represent the states of product components. Transitions
correspond to disassembly operations, and arcs correspond
to the flow between component tasks, which can represent
priority relationships between actions. The DPN of a product
is established based on the geometric constraint relationships
and/or logical relationships among all subcomponents/parts
that constitute the product, as well as disassembly states
and disassembly resource information. This work uses DPN
to describe the relationships between tasks and components
in a product. Fig. 2 shows a simple DPN. The product

disassembly starts from 𝑀0, and when 𝑆1 is present, 𝑇1 can be
executed. After executing 𝑇1, 𝑆1 is consumed and 𝑆2 and 𝑆3
are produced, meaning that by performing disassembly task
𝑇1, component 𝑆1 is disassembled to obtain components 𝑆2
and 𝑆3.

Fig. 2. A simple DPN.

C. Mathematical Model

1) Notations
𝑘 Number of disassembly factories.
𝑟 Number of remanufacturing factories.
𝑝 Number of products.
𝐼𝑝 Maximum number of components for product 𝑝.
𝐽𝑝 Maximum number of tasks for product 𝑝.
𝑤 Number of workstations in a disassembly factory.
𝑛 Index of disassembly techniques.
𝑠 Index on a side of U-shaped line.
K Set of disassembly factories, K={1,2,...,𝑘}.
R Set of remanufacturing factories, R={1,2,...,𝑟}.
P Set of products, P={1,2,...,𝑝}.
I𝑝 Set of components in product 𝑝,

I𝑝 = {1, 2, ..., 𝐼𝑝}.
J𝑝 Set of tasks in product 𝑝, J𝑝={1,2,...,𝐽𝑝}.
W𝑈
𝑘

Set of workstations on U-shaped line of
disassembly factory 𝑘 , W𝑈

𝑘
= {1, 2, ..., 𝑤𝑈

𝑘
}.

W𝐿
𝑘

Set of workstations on linear line of
disassembly factory 𝑘 , W𝐿

𝑘
= {1, 2, ..., 𝑤𝐿

𝐾
}.

S Set of sides of U-shaped line, S = {1, 2}.
N Set of disassembly techniques, N={1,2,...,𝑛}.
𝑣𝑟 𝑝𝑖 The price at which remanufacturing factory

𝑟 purchases disassembled component 𝑖 of product 𝑝.
𝑐𝑘𝑟 𝑝𝑖 The cost of transporting the 𝑖-th component of

product 𝑝 from disassembly factory 𝑘 to
remanufacturing factory 𝑟.

𝑡𝑘𝑝 𝑗 Time required by workers in disassembly factory 𝑘
to complete task 𝑗 for product 𝑝.

𝑐𝐷
𝑘𝑝 𝑗

Unit time cost incurred by workers in disassembly
factory 𝑘 for performing task 𝑗 of product 𝑝.

𝑐𝑂
𝑘

Unit time cost associated with the operation of
disassembly factory 𝑘 .

𝑐𝑈
𝑘𝑤

Fixed cost to activate workstation 𝑤 on U-shaped
line of disassembly factory 𝑘 .

𝑐𝐿
𝑘𝑤

Fixed cost to activate workstation 𝑤 on linear line
of disassembly factory 𝑘 .

𝑇 𝑡
𝑘

The cycle time of disassembly factory 𝑘 .
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2) Decision variables

𝑧𝑝𝑘 =

{
1, if product 𝑝 is disassembled at factory 𝑘.
0, Otherwise.

𝑥𝐿𝑝 𝑗𝑘𝑤 =


1, if disassembly task 𝑗 of product 𝑝 is assigned to

linear workstation 𝑤𝐿
𝑘

in disassembly factory 𝑘.
0, otherwise.

𝑥𝑈𝑝 𝑗𝑘𝑤𝑠 =


1, if disassembly task 𝑗 of product 𝑝 is performed on

side 𝑠 of workstation 𝑤𝑈
𝑘

in disassembly factory 𝑘.
0, otherwise.

𝑦𝐿𝑘 =


1, if the linear disassembly line of disassembly

factory 𝑘 is opened.
0, otherwise.

𝑦𝑈𝑘 =


1, if the U-shaped disassembly line of

disassembly factory 𝑘 is opened.
0, otherwise.

𝑢𝐿𝑘𝑤 =


1, if workstation 𝑤 on linear line of disassembly

factory 𝑘 is opened.
0, otherwise.

𝑢𝑈𝑘𝑤 =


1, if workstation 𝑤 on U-shaped line of disassembly

factory 𝑘 is opened.
0, otherwise.

𝜂𝑘𝑟 𝑝𝑖 =


1, if the 𝑖-th component of product 𝑝 is shipped from

disassembly factory 𝑘 to remanufacturing factory 𝑟.
0, otherwise.

3) Assumptions
To focus solely on the core aspects of this work, makes

problem solving the following assumptions.
a. The parameters of the disassembled products in different

disassembly factories are known, encompassing the time
and cost of disassembly tasks for the disassembled prod-
ucts, the profits obtained, and the Petri net of products.

b. Each disassembly factory operates independently.
c. The operating cost of each disassembly factory is known,

including the factory startup cost.
d. The parameters related to the disassembly lines of each

factory are also known, such as the costs of workstations
for linear or U-shaped disassembly lines in different dis-
assembly factories and the costs of starting disassembly
lines.

e. The distances and transportation cost between disassem-
bly factories and remanufacturing factories are known.

f. The recycled parts possess certain remanufacturing and
reuse value.

g. The disassembly technology required for disassembling
products and the disassembly technology owned by dis-
assembly factories are known.

4) Objective is to maximize disassembly profit

𝑓 =
∑︁
𝑘∈K

∑︁
𝑟∈R

∑︁
𝑝∈P

∑︁
𝑖∈I𝑝
(𝑣𝑟 𝑝𝑖 − 𝑐𝑘𝑟 𝑝𝑖)𝜂𝑘𝑟 𝑝𝑖

−
∑︁
𝑘∈K

∑︁
𝑝∈P

∑︁
𝑗∈I𝑝

∑︁
𝑤∈W𝐿

𝑘

𝑐𝐷𝑘𝑝 𝑗 𝑡𝑘𝑝 𝑗𝑥
𝐿
𝑝 𝑗𝑘𝑤

−
∑︁
𝑘∈K

∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

∑︁
𝑤∈W𝑙

𝑘

∑︁
𝑠∈S

𝑐𝐷𝑘𝑝 𝑗 𝑡𝑘𝑝 𝑗𝑥
𝑈
𝑝 𝑗𝑘𝑤𝑠 −

∑︁
𝑘∈K

𝑐𝑂𝑘 𝑇
𝑡
𝑘

−
∑︁
𝑘∈K

∑︁
𝑤∈W𝐿

𝑘

𝑐𝐿𝑘𝑤𝑢
𝐿
𝑘𝑤 −

∑︁
𝑘∈K

∑︁
𝑤∈W𝑈

𝑘

𝑐𝑈𝑘𝑤𝑢
𝑈
𝑘𝑤

(1)

The first term in (1) captures the profit derived from the
difference between the recovery value of disassembled compo-
nents and their transportation cost. The second and third terms
account for the cost associated with disassembling products
on linear and U-shaped disassembly lines, respectively. The
fourth term represents the fixed cost of operating disassembly
factories. Lastly, the fifth and sixth terms correspond to the
fixed cost of activating workstations on the linear and U-
shaped disassembly lines, respectively.

5) Constraints

𝛽𝑝 𝑗 𝑗′ (
∑︁
𝑤∈W𝑈

𝑘

(
𝑤(𝑥𝑈𝑝 𝑗𝑘𝑤1

− 𝑥𝑈𝑝 𝑗′𝑘𝑤1
) + (2𝑊𝑈

𝑘 − 𝑤)
)

(𝑥𝑈𝑝 𝑗𝑘𝑤2
− 𝑥𝑈𝑝 𝑗′𝑘𝑤2

) + 2𝑊𝑈
𝑘 (

∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗′𝑘𝑤𝑠 − 1)) ≤ 0,

∀𝑝 ∈ P, 𝑗 , 𝑗 ′ ∈ J𝑝 , 𝑘 ∈ K

(2)

𝑢𝑈𝑘𝑤 ≤ 𝑦
𝑈
𝑘 ,∀𝑤 ∈ W𝑈

𝑘 , 𝑘 ∈ K (3)

𝑥𝑈𝑝 𝑗𝑘𝑤𝑠 ≤ 𝑢
𝑈
𝑘𝑤 ,∀𝑝 ∈ P, 𝑗 ∈ J𝑝 , 𝑘 ∈ K, 𝑤 ∈ W𝑈

𝑘 , 𝑠 ∈ S (4)

𝛾𝑝 𝑗 𝑗′ (
∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑠∈S
(𝑥𝑈𝑝 𝑗𝑘𝑤𝑠 + 𝑥

𝑈
𝑝 𝑗′𝑘𝑤𝑠)) ≤ 1,

∀𝑝 ∈ P, 𝑗 , 𝑗 ′ ∈ J𝑝 , 𝑘 ∈ K

(5)

∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

∑︁
𝑠∈S

𝑡𝑘𝑝 𝑗𝑥
𝑈
𝑝 𝑗𝑘𝑠 ≤ 𝑇

𝑡
𝑘 , ∀𝑘 ∈ K, 𝑤 ∈ W𝑈

𝑘 (6)

𝛽𝑝 𝑗 𝑗′ (
∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗′𝑘𝑤𝑠 −
∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗𝑘𝑤𝑠) ≤ 0,

∀𝑝 ∈ P, 𝑗 , 𝑗 ′ ∈ J𝑝 , 𝑘 ∈ K

(7)

When assigning products to U-shaped disassembly lines,
constraints (2)-(7) must be satisfied. constraint (2) ensures
that the sequence of disassembly tasks on the U-shaped line
meets the required priority relationships. (3) ensures that the
workstations on the U-shaped disassembly line can be started
only after the U-shaped disassembly line is opened. (4) ensures
that products are assigned only to workstations that have been
started. (5) requires that if a disassembly task has prerequisite
tasks, these prerequisite tasks must be completed before the
task is executed. (6) stipulates that the working time of each U-
shaped workstation in the disassembly factory shall not exceed
the factory’s cycle time. (7) ensures that task assignments
comply with the specified conflict relationship constraints.
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𝛽𝑝 𝑗 𝑗′ (
∑︁
𝑤∈W𝐿

𝑘

𝑤(𝑥𝐿𝑝 𝑗𝑘𝑤 − 𝑥
𝐿
𝑝 𝑗′𝑘𝑤) +𝑊

𝐿
𝑘 (

∑︁
𝑤∈W𝐿

𝑘

𝑥𝐿𝑝 𝑗′𝑘𝑤 − 1)) ≤ 0,

∀𝑘 ∈ K, 𝑝 ∈ P, 𝑗 , 𝑗 ′ ∈ J𝑝
(8)

𝑢𝐿𝑘𝑤 ≤ 𝑦
𝐿
𝑘 ,∀𝑤 ∈ W𝐿

𝑘 , 𝑘 ∈ K (9)∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

𝑡𝑘𝑝 𝑗𝑥
𝐿
𝑝 𝑗𝑘𝑤 ≤ 𝑇

𝑡
𝑘 ,∀𝑘 ∈ K, 𝑤 ∈ W𝐿

𝑘 (10)

𝛽𝑝 𝑗 𝑗′ (
∑︁
𝑤∈W𝐿

𝑘

𝑥𝐿𝑝 𝑗′𝑘𝑤 −
∑︁
𝑤∈W𝐿

𝑘

𝑥𝐿𝑝 𝑗𝑘𝑤) ≤ 0,∀𝑝 ∈ P,

𝑗 , 𝑗 ′ ∈ J𝑝 , 𝑘 ∈ K

(11)

𝛾𝑝 𝑗 𝑗′ (
∑︁
𝑤∈W𝐿

𝑘

(
𝑥𝐿𝑝 𝑗𝑘𝑤 + 𝑥

𝐿
𝑝 𝑗′𝑘𝑤

)
) ≤ 1,∀𝑝 ∈ P,

𝑗 , 𝑗 ′ ∈ J𝑝 , 𝑘 ∈ K

(12)

𝑥𝐿𝑝 𝑗𝑘𝑤 ≤ 𝑢
𝐿
𝑘𝑤 ,∀𝑝 ∈ P, 𝑗 ∈ J𝑝 , 𝑘 ∈ K, 𝑤 ∈ W𝐿

𝑘 (13)

In the process of assigning products to the linear disas-
sembly lines, constraints (8)-(13) must be satisfied to ensure
operational efficiency and feasibility. Constraint (8) restricts
the task assignment order to meet the priority relationship.
(9) requires that after the linear disassembly line in the
disassembly factory is opened, its workstations can perform
disassembly tasks. (10) stipulates that the cumulative working
time of each linear workstation in the disassembly factory
shall not exceed the specified cycle time of the factory, so
as to ensure that all tasks are completed within the allocated
time. (11) ensures that the prerequisite tasks for disassembly
tasks have been completed. (12) ensures that task execution
causes no conflict. (13) ensures that products are assigned to
workstations that have already been started.∑︁

𝑟∈R
𝜂𝑘𝑟 𝑝𝑖 ≤

∑︁
𝑤∈W𝐿

𝑘

∑︁
𝑗∈J𝑝

𝛼𝑝𝑖 𝑗𝑥
𝐿
𝑝 𝑗𝑘𝑤

+
∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑗∈J𝑝

∑︁
𝑠∈S

𝛼𝑝𝑖 𝑗𝑥
𝑈
𝑝 𝑗𝑘𝑤𝑠 ,∀𝑝 ∈ P, 𝑖 ∈ I𝑝 , 𝑘 ∈ K

(14)

∑︁
𝑘∈K

𝑧𝑝𝑘 = 1,∀𝑝 ∈ P (15)

𝑧𝑝𝑘 = 0,∀𝑘 ∈ K, 𝑝 ∈ P, 𝑛 ∈ N and 𝛿𝑘𝑛 < 𝜃𝑝𝑛 (16)

∑︁
𝑤∈W𝐿

𝑘

𝑥𝐿𝑝 𝑗𝑘𝑤 +
∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗𝑘𝑤𝑠 ≤ 𝑧𝑝𝑘 ,∀𝑝 ∈ P,

𝑘 ∈ K, 𝑗 ∈ J𝑝

(17)

𝑦𝐿𝑘 + 𝑦
𝑈
𝑘 ≤ 1,∀𝑘 ∈ K (18)

𝑧𝑝𝑘 ≤ 𝑦𝐿𝑘 + 𝑦
𝑈
𝑘 ,∀𝑝 ∈ P, 𝑘 ∈ K (19)

∑︁
𝑘∈K

©­­«
∑︁
𝑤∈W𝑍

𝑘

𝑥𝐿𝑝 𝑗𝑘𝑤 +
∑︁
𝑤∈W𝑈

𝑘

∑︁
𝑠∈S

𝑥𝑈𝑝 𝑗𝑘𝑤𝑠

ª®®¬ ≤ 1,∀𝑝 ∈ P, 𝑗 ∈ J𝑝

(20)
Constraints (14)-(20) must ensure normal operation of the

disassembly lines in the factory, while considering the con-
straints related to the scenario of a remanufacturing factory.
(14) stipulates that the components generated from product
disassembly can only be transported to one manufacturing
factory. (15) stipulates that each product can only be assigned
to one disassembly factory. (16) ensures that each product
is assigned to a disassembly factory that has the necessary
disassembly technology. (17) ensures that the disassembly
tasks of products are carried out on the workstations of the
activated disassembly lines. (18) ensures that each disassembly
plant can only open one type of disassembly line. (19) ensures
that products are only assigned to disassembly factories that
are open. (20) requires that each disassembly task of each
product is performed at most once.

III. PROPOSED ALGORITHM

A. Design of Actions and States

State 𝑆𝑡 = [𝑝, 𝑤, 𝑗𝑝] includes disassembled product 𝑝,
workstation 𝑤, and disassembly task 𝑗𝑝 , where 𝑆𝑡 [0] = 𝑝,
𝑆𝑡 [1] = 𝑤, and 𝑆𝑡 [2] = 𝑗𝑝 . The state is updated each time an
effective disassembly step is taken. The initial state of 𝑆𝑡 is
[0, 0, 0], indicating that disassembly has not yet begun. When
disassembling products, it starts in order from 𝑝 = 1, and when
a product is disassembled, the state is switched and updated
with 𝑆𝑡 [0] = 𝑝 + 1.

Fig. 3. States and actions.

Action 𝐴 = [ 𝑗𝑝 , 𝑤] is used to select a product disassembly
task 𝑗𝑝 and assign it to workstation 𝑤. Here, 𝐴[0] = 𝑗𝑝
and 𝐴[1] = 𝑤. When disassembling product 𝑝, based on the
current state’s disassembly task of product 𝑝, the subsequent
disassembly task for product 𝑝 is determined and stored in
set 𝐽𝑐. Then, 𝐴[0] selects the next disassembly task from
𝐽𝑐 and updates 𝑆𝑡 [2]. Finally, action 𝐴[1] determines the
workstation based on state 𝑆𝑡 [1] and assigns the disassembly
task to it. The factory 𝑘 where the product is assigned and
the factory’s choice of disassembly line 𝑥 are provided by the
LLM decision.
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To determine which disassembly line should be opened in a
factory, array 𝐿𝑘 is used to record the factory’s status, where
𝐿𝑘 [𝑘 − 1] being 1 indicates that factory 𝑘 opens a linear dis-
assembly line and 2 indicates that factory 𝑘 opens a U-shaped
one. These operations effectively avoid invalid decisions based
on transitions between locations and transitions in the Petri
net, thereby improving the training effect. The definitions of
actions and states are shown in Fig. 3.

B. Reward Design

In the proposed algorithm, the reward is designed as the
difference between the maximum profit 𝑓1 obtained in the
current state 𝑆𝑡 and the maximum profit 𝑓2 obtained in the
previous state 𝑆𝑡−1, i.e., 𝑅𝑡 = 𝑓1 − 𝑓2.

Generate results:
Q: There are 2 disassembly factories and 3 products.
Each factory can open at most one linear or U-shaped
disassembly line. Each product can only be assigned to
one factory.
Product 1 yields a profit of 311 on the linear line or 308 on
the U-shaped line in factory 1, and 229 on the linear line
or 230 on the U-shaped line in factory 2. Product 2 yields
a profit of 300 on the linear line or 280 on the U-shaped
line in factory 1, and 243 on the linear line or 310 on the
U-shaped line in factory 2. Product 3 yields a profit of 324
on the linear line or 301 on the U-shaped line in factory
1, and 235 on the linear line or 301 on the U-shaped line
in factory 2.
In the format ”[factory F opens X disassembly line to
disassemble products P.]”, where F means factory F, X
is the line type, and P means product P.
Provide an initial assignment plan. Later, I will give you
the total profit under that plan, and you need to adjust the
assignments to maximize total profit.
A: [factory 1 opens the linear disassembly line to disas-
semble products 1 and 3. factory 2 opens the U-shaped
disassembly line to disassemble product 2.]

C. LLM Decision-making

LLM employed in this work is a language model pre-trained
on large-scale textual data [36, 37]. Its knowledge originates
from a broad array of Internet sources, including academic
papers, technical documentation, and news reports. Although
LLM is not explicitly exposed to the specific scenario of
“disassembly line balancing” during training, its knowledge
base encompasses several key concepts relevant to this prob-
lem—such as factory scheduling, task allocation, resource
optimization, and reinforcement learning. Consequently, LLM
possesses a certain degree of domain versatility and is capable
of applying logical reasoning and generating strategic recom-
mendations related to disassembly-line issues.

In this work, LLM serves as an auxiliary decision-making
tool. Through natural-language interactions with users [38],
it provides recommendations for the assignment of factories
and disassembly lines. Even though it has not been fine-
tuned on the specific disassembly-line problem, its strong

capabilities in language understanding and inference enable
it to perform logical reasoning and generate strategies based
on existing knowledge [39]. Below is an illustrative example
of our interaction with LLM. This work uses ChatGPT-3.5.

LLM parses the text to extract structured information, such
as products (Product 1, Product 2, etc.), factories (factory 1 and
factory 2), linear, U-shaped, etc., to construct a profit matrix.
It then solves the problem through internal optimization algo-
rithms (such as heuristic search and reinforcement learning.)
to find the optimal allocation plan. LLM then outputs the
result in natural language, e.g. [factory 1 opens the linear
disassembly line to disassemble products 1 and 3. Factory 2
opens the U-shaped disassembly line to disassemble product
2]. The LLM decision result in text is extracted by using
regular expressions, and the factories to which the products
are allocated are stored in an array 𝐾𝑝 with a length equal
to the number of products, and the opened disassembly lines
are placed in array 𝐿𝑘 with a length equal to the number of
factories. This process addresses the product allocation and
disassembly line selection part of MROP. Calling these two
arrays in TD3 simplifies the actions in the TD3 algorithm,
providing it with a better initial allocation and enhancing the
optimization effect of the TD3 algorithm.

Through repeated interactions with LLM, we feed it with
the allocation results of different products such that it continu-
ously refines its memory. Ultimately, LLM will record which
factory and disassembly line yields the maximum profit for
each product. Consequently, when multiple products are to
be disassembled, LLM can immediately provide a tailored
allocation plan for each product.

D. Description of the LLM-TD3 algorithm

Fig. 4 illustrates the framework for solving the MROP using
LLM-TD3. During training, the TD3 algorithm randomly
samples a batch of data from the replay buffer to obtain
the state 𝑆𝑡 , action 𝐴, reward 𝑅𝑒, and subsequent state 𝑆′𝑡 .
Then, the Actor network selects actions 𝐴 and 𝐴′ based on
the current state. The target Critic network calculates the
target Q-values based on the state and actions, taking the
smaller of the two as the target value 𝑄′. Meanwhile, It
calculates the current estimated Q-values 𝑄1 and 𝑄2 based
on the state and actions. Finally, the parameters of the Critic1
and Critic2 networks are updated using the mean squared error
(TD error) between target value 𝑄′ and the current estimated
values 𝑄1 and 𝑄2. The parameters of the target network are
softly updated to gradually approach the parameters of the
current network. During the training process, LLM makes
some decisions that are provided to the environment and
the agent provides action feedback to the environment. The
environment then decomposed on the basis of the decisions
and actions is obtaining a new state, and placing it into the
buffer.

In Algorithm, each episode consists of multiple steps. An
episode generates a solution for MROP, and at each step of the
episode, the environment sends a new state to the agent based
on LLM’s decision. The agent observes this state and inputs
the feasible disassembly factories, disassembly workstations,
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Fig. 4. Framework for solving MROP using LLM-TD3.

and disassembly tasks into its Q-network. Subsequently, it
obtains the Q-value of a state and action to guide the agent
in selecting the action with a higher Q-value. At the end of
the episode, the environment is updated, and then the agent
can choose better actions based on the states stored in the
replay buffer. The algorithm 1 presents the pseudocode of the
LLM-TD3 procedure to solve MROP.

IV. EXPERIMENTAL DESIGN AND ANALYSIS

All algorithms in this work are implemented in PyCharm
Community Edition 2022.2.1 and are compiled with Python
3.9.7. Experiments and tests are conducted on a computer
equipped with a 3.20 GHz AMD Ryzen 7 5800H CPU and
16 GB of RAM to ensure consistent experimental conditions.

A. Case Design
This work uses washing machines, radios, lithium-ion bat-

teries, and bearing housings as disassembly products for
experiments. Table I presents the relevant data input to LLM,
where ’-’ indicates that the disassembly factory does not meet
the technical requirements for disassembling a given product.
Table II shows the experimental case design. Table III provides
the disassembly technology information required for product
disassembly.

B. Experimental Design
To evaluate the performance of LLM-TD3 in solving MROP,

we compare it with the CPLEX and four existing algorithms:

Fig. 5. Training
progress for case 1.

Fig. 6. Training progress for case 2.

Fig. 7. Training
progress for case 3.

Fig. 8. Training progress for case 4.

TD3 [40], DDPG [41], SAC [5], A2C [42]. The experimental
settings of the algorithms in this study are based on the
open-source framework provided by Stable-Baselines3. The
initialization settings of the algorithms are kept consistent,
with a learning rate of 1 × 10−5 and a batch size of 100. The
algorithms are run for five trials, with each trial consisting of
1000 iterations.
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TABLE I Profits of products on different disassembly lines in factories

Case Number Product Factory 1 Factory 2 Factory 3
Linear Line U-shaped Linear Line U-shaped Linear Line U-shaped

1 Washing Machine - - 258 266 - -
Bearing Seat 139 135 - - - -

Washing Machine 311 308 229 230 - -
2 Bearing Seat - - 245 255 - -

Radio 443 442 393 399 - -
Washing Machine - - 129 139 - -

3 Bearing Seat - - 229 239 - -
Radio 265 262 - - - -

Battery 707 711 788 794 - -
Washing Machine 1 106 114 129 139 - -

Bearing Seat 1 208 214 229 239 - -
4 Radio 1 265 262 - - 244 247

Battery 1 - - 788 794 - -
Washing Machine 2 119 127 142 152 - -

Bearing Seat 2 214 220 235 245 - -
Radio 2 282 280 - - 262 266

Battery 2 - - 806 812 - -
Washing Machine 1 190 186 216 220 176 180
Washing Machine 2 216 212 148 152 108 112
Washing Machine 3 202 198 151 155 263 267

Bearing Seat 1 - - 201 205 146 150
Bearing Seat 2 - - 264 268 45 49
Bearing Seat 3 - - 187 191 46 50

5 Radio 1 336 330 323 336 - -
Radio 2 272 274 308 312 - -
Radio 3 273 274 333 364 - -

Battery 1 521 537 634 674 - -
Battery 2 580 570 301 305 - -
Battery 3 487 483 467 489 - -

Washing Machine 1 227 223 245 249 248 252
Washing Machine 2 259 256 179 183 180 184
Washing Machine 3 255 251 172 176 329 333
Washing Machine 4 233 229 215 219 312 316

Bearing Seat 1 167 163 186 190 233 237
Bearing Seat 2 258 254 165 169 224 228
Bearing Seat 3 173 169 301 305 167 171
Bearing Seat 4 120 116 177 181 85 89

6 Radio 1 403 401 347 358 383 387
Radio 2 343 340 325 329 369 373
Radio 3 365 361 381 404 317 321
Radio 4 425 425 267 276 310 314

Battery 1 711 717 726 758 770 782
Battery 2 714 710 507 525 691 707
Battery 3 939 935 523 541 734 750
Battery 4 653 659 652 684 802 814

TABLE II Case design

Case
Number

Product
Quantity Product Factory

Washing
Machine

Bearing
Seat Radio Lithium

Battery
Disassem-

bly Factory
Remanufac-

turing Factory
1 2 1 1 0 0 2 2
2 3 1 1 1 0 2 2
3 4 1 1 1 1 2 2
4 8 2 2 2 2 3 3
5 12 3 3 3 3 3 6
6 16 4 4 4 4 3 6

C. Experimental Result Analysis

Table IV shows the product allocation results for different
cases of MROP solved by CPLEX and LLM-TD3. The number
before Z or U indicates the disassembly factory number, Z
represents that the factory opens a linear disassembly line,
and U represents that it opens a U-shaped disassembly one.
The number in the parentheses in cases 5 and 6 indicates the
corresponding product number. When multiple products of the

TABLE III Disassembly technology information

Case
Number

Product Required
Disassembly Technology

Factory Owned
Disassembly Technology

1 Washing Machine: [1, 0, 0, 1],
Bearing Seat: [0, 1, 1, 0]

Factory 1: [1, 1, 1, 1],
Factory 2: [1, 0, 0, 1]

2
Washing Machine: [1, 1, 0, 0],

Bearing Seat: [0, 1, 0, 1],
Radio: [0, 1, 1, 1]

Factory 1: [1, 1, 1, 1],
Factory 2: [1, 1, 1, 1]

3

Washing Machine: [1, 0, 0, 1],
Bearing Seat: [0, 1, 1, 0],

Radio: [0, 1, 1, 1],
Lithium Battery: [0, 1, 1, 1]

Factory 1: [0, 1, 1, 1],
Factory 2: [1, 1, 1, 1]

4

Washing Machine: [1, 0, 0, 0],
Bearing Seat: [0, 1, 0, 1],

Radio: [0, 1, 1, 1],
Lithium Battery: [0, 1, 1, 1]

Factory 1: [1, 1, 1, 1],
Factory 2: [1, 1, 1, 1],
Factory 3: [1, 1, 1, 1]

5

Washing Machine: [0, 1, 1, 0],
Bearing Seat: [0, 1, 1, 1],

Radio: [0, 1, 1, 1],
Lithium Battery: [0, 1, 1, 1]

Factory 1: [1, 1, 1, 1]

6

Washing Machine: [0, 0, 1, 0],
Bearing Seat: [0, 1, 1, 1],

Radio: [0, 1, 1, 1],
Lithium Battery: [0, 1, 1, 1]

Factory 2: [1, 1, 1, 1],
Factory 3: [1, 1, 1, 1]
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TABLE IV Product assignment by CPLEX and LLM-TD3

Case
Number

CPLEX
Allocation Plan

LLM-TD3
Allocation Plan

1 1Z:{Bearing Seat},
2U:{Washing Machine}

1Z:{Bearing Seat},
2U:{Washing Machine}

2
1Z:{Washing Machine,

Radio},
2U:{Bearing Seat}

1Z:{Washing Machine, Radio},
2U:{Bearing Seat}

3

1Z:{Radio},
2U:{Washing Machine,

Bearing Seat,
Lithium Battery}

1Z:{Radio},
2U:{Washing Machine,

Bearing Seat, Lithium Battery}

4 -

1Z:{Radio},
2U:{Washing Machine,

Bearing Seat,
Lithium Battery}

5 - 1Z:{Washing Machine(2), Radio(1),
Lithium Battery(2, 3)},

2U:{Washing Machine(1),
Bearing Seat,

Radio(2, 3), Lithium Battery(1)},
3U:{Washing Machine(3)}

6 -
1Z:{Washing Machine(2),

Bearing Seat(2),
Radio(1, 4), Lithium Battery(2, 3)},

2U:{Washing Machine(1),
Bearing Seat(3, 4), Radio(3)},
3U:{Washing Machine(3, 4),

Bearing Seat(1),
Radio(2), Lithium Battery(1, 4)}

Fig. 9. Training
progress for case 5.

Fig. 10. Training progress for case 6.

TABLE V Maximum profit achieved by different algorithms

Case Number LLM-TD3 TD3 DDPG SAC A2C CPLEX
1 400 397 382 385 367 405
2 1013 995 956 992 967 1041
3 1420 1392 1317 1381 1332 1480
4 2925 2892 2817 2879 2789 -
5 4267 4067 4026 4111 3983 -
6 7259 7164 7007 7040 6733 -

TABLE VI Mean and standard deviation of profits from
different algorithms

Case
Number LLM-TD3 TD3 DDPG SAC A2C

1 203.17
±0.42

187.78
±0.39

183.04
±0.41

164.98
±0.54

145.86
±0.51

2 728.07
±0.13

710.09
±0.14

675.45
±0.15

685.02
±0.15

713.19
±0.13

3 1046.08
±0.09

919.76
±0.22

874.97
±0.18

889.96
±0.22

914.99
±0.18

4 2386.10
±0.07

1994.62
±0.18

1826.94
±0.18

1900.94
±0.15

2068.64
±0.14

5 3791.34
±0.04

3417.93
±0.06

3296.91
±0.08

3376.49
±0.07

3248.72
±0.08

6 6794.91
±0.02

6489.66
±0.03

6398.39
±0.03

6478.58
±0.02

6181.38
±0.03

Algorithm 1 State transition process based on LLM

Input: Action 𝐴 = [ 𝑗𝑝 , 𝑤], state 𝑆𝑡 = [𝑝, 𝑤, 𝑗𝑝]
Output: Next state 𝑆𝑡+1 = [𝑝′, 𝑤′, 𝑗 ′𝑝], 𝑅𝑡

Begin
Obtain 𝐾𝑝 , 𝐿𝑘 from LLM.
if product 𝑝 has been fully disassembled then
𝑝′ ← 𝑝 + 1

else
𝑝′ ← 𝑆𝑡 [0]

end if
if 𝐿𝑘 [𝐾𝑝 [𝑝 − 1]] == 0 then
𝐿𝑘 [𝐾𝑝 [𝑝 − 1]] ← 𝐴[0]%2 + 1

end if
if 𝐿𝑘 [𝐾 − 1] == 1 then
𝑤′ ← 𝐴[1]mod number of workstations

else
𝑤′ ← 𝐴[1] mod (2× number of workstations) + 1

end if
if 𝑤′ < 𝑆𝑡 [1] then
𝑤′ ← 𝑆𝑡 [1]

end if
𝑗 ′𝑝 ← 𝐴[0]%(remaining disassembly tasks) + 1
Record obtained components
Obtain 𝑆𝑡+1 = [𝑝′, 𝑤′, 𝑗 ′𝑝]
if 𝑝′, 𝐾𝑝 [𝑝′ − 1], 𝑤′, 𝑗 ′𝑝 ≠ 0 then
𝑧𝑝𝑘 ← 1, 𝑥𝑢

𝑝 𝑗𝑘𝑤𝑠
← 1, 𝑥𝐿

𝑝 𝑗𝑘𝑤
← 1, 𝑦𝑢

𝑘
← 1, 𝑦𝐿

𝑘
← 1,

𝑢𝑢
𝑘𝑤
← 1, 𝑢𝐿

𝑘𝑤
← 1

end if
Calculate 𝑅𝑡
return 𝑆𝑡+1, 𝑅𝑡
End

same type are assigned to the same disassembly factory, no
number is marked. ’-’ indicates that CPLEX fails to obtain an
optimal solution after running for three hours. Looking at the
allocation results in Table IV in cases 1-3, the results of the
two allocation schemes are exactly the same. This indicates
that in these cases, LLM-TD3 can make the best allocation
decisions based on the given data, effectively solving the
product allocation problem and achieving the same optimal
results as CPLEX. Therefore, the allocation schemes provided
by LLM-TD3 in cases 4-6. Table IV shows that CPLEX and
LLM-TD3 yield the same results in Cases 1-3, whereas Table
V reports different results. This discrepancy is attributed to the
different workstations selected by the two approaches during
task execution.

Next, the performance and effectiveness of LLM-TD3 are
evaluated by comparing the maximum values, average values,
and standard deviations obtained by different algorithms in
solving MROP, as well as the convergence of the average
values during training.

Figs. 5 to 10 show the convergence of average rewards
for different cases of the MROP solved by five algorithms
over 1000 iterations. Each chart represents a case, with the
x-axis indicating the number of training episodes and the y-
axis indicating the average reward. In all cases, since the
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differences among the solutions in MROP are not particularly
large, the algorithms start with a baseline value during training,
followed by some value fluctuations. Note that, describing the
training process with the average value can better visualize the
training process.

It can be seen from the figures that LLM-TD3 has relatively
high stability and a higher final average value in all cases. This
is attributed to the excellent decisions made by LLM, which
provides a high-quality initial solution for TD3. In cases 1
and 2, although it performs better than its peers, it is not as
outstanding as in cases 3-6. This is because cases 1 and 2 have
a smaller scale and are easy to solve, while cases 3-6 have a
larger scale and are more difficult to solve. Since LLM-TD3
operates based on the excellent decisions made by LLM, it
achieves the best results.

Table V shows the maximum profit obtained by the algo-
rithms in each case, where ’-’ indicates that CPLEX fails after
running for three hours. The values obtained by LLM-TD3
are close to those of CPLEX, indicating that LLM-TD3 is
effective in solving MROP. Compared to its four peers, LLM-
TD3 achieves the highest values in all cases. Table VI shows
the total average values and standard deviations after five
trials and 1000 iterations in each case. LLM-TD3 has higher
average reward values and smaller standard deviations in all
cases, indicating its better overall performance than its peers.
Therefore, LLM-TD3 has better stability and effectiveness in
solving MROP.

V. CONCLUSION

This work addresses the optimization problem of a re-
manufacturing system with multiple types of factories and
mixed-line layouts. It establishes a collaborative optimization
mechanism between the balancing of the disassembly line
and the remanufacturing in multiple types of factories. Based
on the disassembly technological characteristics of different
factories, a product-factory matching decision model is con-
structed to achieve the optimal assignment of disassembly
tasks. The work proposes a mixed-line layout optimization
model for remanufacturing in multiple types of factories with
the objective of maximizing system profit.

By introducing the intelligent decision-making capability of
LLM, the convergence speed and optimization effect of TD3 as
a reinforcement learning algorithm are significantly enhanced.
Experimental results demonstrate that the proposed LLM-
TD3 hybrid optimization framework achieves superior solution
efficiency and quality compared to several competitive peers
within this specific problem context. These findings validate
the potential effectiveness of integrating LLMs with reinforce-
ment learning for addressing complex scheduling challenges
in remanufacturing, presenting a promising methodological
exploration. Future research will focus on enhancing the
framework’s robustness, such as addressing LLM output vari-
ability and handling dynamic disturbances, to bridge the gap
toward real-world application and explore other directions
[43, 44, 45].
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