
INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 132

Adaptive Large Neighborhood Search for
Cost-Effective and Efficient Decentralized

Remanufacturing
Yuanyuan Tan, Zihao Wei, Haibin Zhu, and Behzad Akbari

Abstract—Centralized manufacturing is increasingly facing
challenges from technological advancements and global economic
integration. In response, decentralized manufacturing has be-
come a viable solution that reduces production, storage, and
transportation costs by providing products to consumers. This
article proposes an optimized multi-factory remanufacturing
process that integrates dismantling factories, manufacturing
factories, dismantling workstations, and third-party logistics to
improve overall system performance. It focuses on dismantling
line balancing, efficient transportation and route planning, as
well as minimizing the cost of dismantling plant workstations.
This article introduces a multi-objective optimization method that
improves existing disassembly schemes and enhances delivery
and transportation stages through Adaptive Large Neighborhood
Search (ALNS). This method aims to optimize the overall
execution profit and transportation efficiency within the disman-
tling plan. In addition, the study introduced a mixed integer
programming model to achieve maximum profit and improve the
overall performance of the reverse supply chain. The proposed
mathematical model has been validated using the CPLEX solver
to confirm its accuracy and feasibility.

Key Words—Multi-plant remanufacturing process optimiza-
tion, Reverse Supply Chain, Two-stage problem

I. INTRODUCTION

The increasing scarcity of global resources and promi-
nent environmental issues have highlighted the limitations
of traditional centralized manufacturing models[1]. Decen-
tralized manufacturing not only brings products closer to
customers, but also reduces production, storage, and trans-
portation costs. Under the dual pressure of the economy and
environment, the manufacturing industry urgently needs to

Manuscript received September 1, 2025; revised September 13 and Septem-
ber 18, 2025; accepted October 7, 2025. This article was recommended for
publication by Associate Editor Shujin Qin upon evaluation of the reviewers’
comments.

This work was supported in part by Liaoning Revitalization Talents Program
under Grant XLYC1907166, in part by the Natural Science Foundation of
Shandong Province under Grant ZR2024BF140, and in part by Archival
Science and Technology Project of Liaoning Province under Grant 2021-B-
004.

Y. Tan is with the College of Artificial Intelligence, Shenyang University
of Technology, Shenyang 110870, China (e-mail: tanyuanyuan83@sina.com).

Z. Wei is with the College of Artificial Intelligence and Soft-
ware, Liaoning Petrochemical University, Fushun 113001, China (e-mail:
952048182@qq.com).

H. Zhu is with the Department of Computer Science and Mathemat-
ics, Nipissing University, North Bay P1B 8L7, Canada (e-mail: haib-
inz@nipissingu.ca).

B. Akbari is with the Department of Electrical and Computer Engineer-
ing, Michigan Technological University, Houghton 49931, USA (e-mail:
behzadak@mtu.edu).

Corresponding author: Yuanyuan Tan

build a reverse supply chain network that balances ecological
and economic benefits. In the process of reverse supply
chain optimization, Disassembly and assembly Line Balancing
Problem (DLBP) and Vehicle Routing Problem (VRP) are
two key sub problems[2, 3, 4]. In this regard, this article
combines two key sub problems for consideration,and formal-
izes. Integrated-Multi-factory Remanufacturing Process Opti-
mization (I-MRPO) considering Delivery services Problem (I-
MRPO-DP).

The MRPO Problem (MRPOP) is a distributed layout envi-
ronment that adds dismantling factories, remanufacturing fac-
tories, and third-party transportation fleets on the basis of the
dismantling line balance problem. MRPOP not only involves
complex DLBP, component transportation, and remanufactur-
ing scheduling, but also needs to consider the comprehensive
optimization of order requirements, delivery deadlines, and
cost-effectiveness[5]. It is highly complex and challenging,
aiming to approach dismantling problems from a more holis-
tic perspective. The important decision point of MRPOP is
how to design an efficient scheduling plan, which involves
optimizing the entire process from the recycling center to the
dismantling factory, and then to the manufacturing factory.
This includes optimizing the sequence of dismantling tasks,
allocating workstations, limiting the number and capacity of
vehicles in third-party logistics fleets, and managing the flow
and distance between delivery tasks[6, 7, 8].

The Delivery Vehicle Routing (DVR) Problem (DVRP) in
the VRP problem family was first discussed by Habibi et
al.[9] It imposes additional coupling constraints and priority
constraints, requiring a pair of hybrid services (including pick-
up and delivery) to be completed within one route, and the
pick-up service must be completed before the delivery service
begins [10, 11, 12].

In existing research, DLBP and VRP are mostly discussed
separately, failing to reflect the overall collaborative require-
ments of distributed manufacturing systems in the context of
Industry 4.0. For example, Hezer et al.[13] proposed a dis-
mantling line balancing model aimed at reducing the number
of workstations, while Guo et al.[14] explored the DLBP
balancing problem while considering worker fatigue. Cui and
others conducted[15] research with the goal of minimizing
carbon emissions and energy consumption. Kenger et al.[16]
first proposed an integrated model of DLBP and VRP, but it is
only applicable to situations where a single disassembly center
supplies multiple remanufacturing factories. At present, there
is no literature on the integration of Multi-Factory Remanufac-

133 INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025

turing Process Optimization Problem (MRPOP) and Delivery
Vehicle Routing Problem (I-MRPOP-DVRP)[17].

The contributions of this work are summarized as follows.
1) In order to consider the impact of dismantling costs and

transportation costs (transportation efficiency, transporta-
tion path) on dismantling revenue, this work addresses the
I-MRPOP-DVRPs problem, aiming to maximize profits
and reduce costs.

2) It proposes the Adaptive Large Neighborhood Search
(ALNS) algorithm to solve the proposed problem. Aim to
gradually increase the target value by applying a deletion
heuristic and an insertion heuristic to the solution in each
iteration.

3) Construct the two major sub problems in the reverse
supply chain optimization process as a two-stage problem,
and input the results of the first stage (MRPOP) into
the second stage (DVRP). Further compare the results
of different scale cases and CPLEX results using the
proposed method.

The paper is structured as follows. I-MRPOP-DVRP is de-
scribed in Section II. Its solution method, ALNS, is explained
in Section III. Experimental results are presented in Section
IV. Future work is summarized in Section V of this paper.

II. PROBLEM DESCRIPTION

A. Problem description

This article explores the integration of DLBP and DVRP in
MRPOP. Multi-factory remanufacturing is part of the Reverse
Supply Chain (RSC) network, including dismantling plants,
manufacturing plants, workstations, and transport vehicles[18].
It aims to address various challenges, including factory site
selection, product positioning, sequencing of dismantling pro-
cesses, product remanufacturing, and vehicle route planning.
The dismantling task is supervised by the dismantling factory,
and then the dismantled sub components are transported to
the manufacturing factory by vehicles. An important focus
of optimizing the RSC network is to effectively design ef-
ficient reverse logistics channels. This requires determining
the number and location of dismantling and manufacturing
factories, optimizing the sequence of dismantling tasks, al-
locating workstations, setting capacity limits for third-party
logistics vehicles, determining service times for task nodes,
and managing the processes and distances between delivery
tasks[19, 20, 21]. As shown in Fig. 1, the problem can be
divided into three stages:

1) Selection and dismantling scheduling of dismantling fac-
tories: Multiple dismantling factories and manufacturing
factories distributed in different locations have been de-
signed. The dismantling factories have multiple work-
stations and dismantling lines, as shown in Fig . 2
which can simultaneously carry out parallel dismantling
tasks for different products[22]. By reasonably allocating
disassembly tasks to workstations, optimizing the cycle
and open time of factories and workstations based on
task priority relationships and workstation cycle time
constraints, and finding the optimal solution for linear dis-
assembly offline incomplete disassembly problems[23].

2) Remanufacturing factory selection: This stage focuses on
component allocation[24]. Based on the sub component
prices of different manufacturing factories and the dis-
tance between disassembly and manufacturing factories,
sub components obtained from different products are
allocated to appropriate manufacturing factories[25].

3) Plan the optimal transportation route: This stage deals
with the transportation of disassembled parts, especially
DVRP issues. The goal is to plan the most effective
route from dismantling plants to manufacturing plants,
ensuring the successful transportation of all dismantled
parts and meeting the requirements of all businesses along
the way[26]. Considerations include vehicle capacity lim-
itations and service time, where each part request must be
picked up and delivered by the same vehicle. In addition,
the load of each transportation node must comply with
the maximum capacity limit of visiting vehicles. The
load can be integrated for transportation to minimize
transportation costs[27, 28, 29]. Service time is defined
as the shortest time between arrival at each node and
departure, including the time for loading and unloading
goods. For the warehouse, the service time is set to 0. The
schematic diagram of the multi-factory remanufacturing
process for transportation resource sharing is shown in
Fig .1.

Fig. 1. The workflow of multi-factory remanufacturing
process optimization

Fig. 2. Linear and U-shaped hybrid disassembly line

In addition, this work makes the following assumptions:
1) The location of each disassembly factory and remanufac-

turing factory is known.

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 134

2) Each End-of-life (EOL) parameter is known, including
the cost of disassembling the product, the profit obtained,
and the AND/OR chart. The weight and output of all sub
components of the product are known (See Section II.B).

3) The requirements for components in each factory are
determined and must be met.

4) The disassembly relationship matrix (D), priority matrix
(S), and conflict matrix (R) are known.

5) The dismantling process is incomplete dismantling.
6) The time spent on dismantling tasks and the cost per

unit time are known, and each dismantling task can be
processed on any workstation.

7) Each vehicle has a maximum capacity limit, which re-
quires that the vehicle load after accessing each task node
does not exceed its maximum capacity.

8) The service time of the transport vehicle when accessing
task nodes is known, and the load requests of all task
nodes in the network are known, represented by positive
and negative signs for pick-up/delivery requests.

9) The running time of each workstation should not exceed
the cycle time of the dismantling factory it is located in.

B. Mathematical Model

A mathematics model formally specifies a system under
study and supports analysis and verification [30][31]. To
establish the model for I-MRPOP-DVRP, we need to first
understand three fundamental matrices:

1) Basic Matrix:
The correlation matrix 𝐷 = 𝑑

𝑝

𝑖 𝑗
describes the relationship

between components and disassembly tasks, where 𝑖 represents
components, 𝑗 represents people, and 𝑝 represents product
numbers.

𝑑
𝑝

𝑖 𝑗
=



1, If the disassembly task 𝑗 of product 𝑝 can obtain
component 𝑖.

−1, If the disassembly task 𝑗 of product 𝑝 cannot obtain
component 𝑖.

0, otherwise.

The priority matrix 𝑆 = 𝑠
𝑝

𝑗1, 𝑗2 describes the relationship
between two tasks, where 𝑗1 and 𝑗2 represent disassembly
tasks, and 𝑝 represents product number.

𝑠
𝑝

𝑗1 𝑗2 =


1, If task 𝑗1 of product 𝑝 is a prerequisite task for

task 𝑗2.
0, otherwise.

Conflict matrix 𝑅 = 𝑟
𝑝

𝑗1, 𝑗2 describes the conflict relationship
between two tasks, where 𝑗1 and 𝑗2 represent disassembly
tasks, and 𝑝 represents product number.

𝑟
𝑝

𝑗𝑞
=


1, If there is a conflict between task 𝑗 and task 𝑞

of product 𝑝.

0, otherwise.

The disassembly allocation relationship variable 𝛼𝑘,𝑚,𝑝,𝑖

describes the allocation relationship of components from the

disassembly factory to the manufacturing factory, where 𝑘

represents the disassembly factory, 𝑚 represents the man-
ufacturing factory, 𝑝 represents the product number, and 𝑖

represents the component number.

𝛼𝑘𝑚𝑝𝑖 =


1, Component 𝑖 of product 𝑝 is transported from

dismantling factory 𝑘 to remanufacturing fact-
ory 𝑚.

0, otherwise.

The distance matrix 𝑑𝑒, 𝑓 describes the Euclidean distance
between two task nodes, where 𝑒 and 𝑓 represent two different
nodes.

The travel time matrix 𝑡𝑒, 𝑓 describes the travel time taken
by a vehicle to pass through two task nodes, where 𝑒 and 𝑓

represent two different nodes.
2) Sets:
K Dismantling factory assembly, K={1,2,...,K}.
M Assembly of manufacturing factories, M={1,2,...,M}.
P𝑛 Pick node set, P𝑛={1,2,...,n}.
D𝑛 Collection of delivery nodes, D𝑛={n+1,n+2,...,2n}.
N
′

Collection of all task nodes,
N
′
=P𝑛UD𝑛={1,2,...,n,n+1,n+2,...2n}.

N All node sets contain starting and ending points,
N={0,1,2,...,n,n+1,n+2,...2n,2n+1},0 and 2n+1 both
represent warehouses .

V Collection of transportation vehicles, V={1,2,...,V}.
P Product Collection, P={1,2,...,V}.
I𝑝 Collection of components for the product, I𝑝={1,2,...,I𝑝}.
J𝑝 Task set for Product P, J𝑝={1,2,...,J𝑝}.
W𝑘 The collection of workstations (linear dismantling lines)

for the first dismantling factory, W𝑘={1,2,...,W𝑘}.
3) Parameters:

𝑣𝑚𝑝𝑖 The price of component 𝑖 of product 𝑝 purchased
by the mth factory.

𝑤𝑝𝑖 The weight of component 𝑖 in product 𝑝.
𝑑𝑒 𝑓 Euclidean distance from node e to node 𝑓 .
𝑡𝑒 𝑓 Travel time from node e to node 𝑓 .
𝑐𝑇
𝑘𝑚

The transportation cost from dismantling factory 𝑘

to manufacturing factory 𝑚 is based on distance;.
𝑄𝑣 Indicate the maximum load capacity of vehicle 𝑣.
𝑡𝑝 𝑗 Disassembly time for task 𝑗 of product 𝑝.
𝑐𝐷
𝑘𝑝 𝑗

Unit time dismantling cost of task 𝑗 for product 𝑝.
𝑐𝑜
𝑘

Unit time cost for opening dismantling factory 𝑘 .
𝑐𝑠
𝑘𝑤

Open the fixed cost of dismantling factory 𝑘

workstation 𝑤.
𝑊𝑘𝑚𝑝𝑖 The weight of component 𝑖 of product 𝑝 transp-

orted from dismantling factory 𝑘 to manufact-
uring factory 𝑚.

𝑇 𝑘 Cycle time for dismantling factory 𝑘 .
𝑞𝑒 Load demand of task node 𝑒,𝑞𝑒 > 0 represents a

pick-up request, 𝑞𝑒 < 0 represents a delivery request.
𝑄𝑣

𝑒 Current load of vehicle 𝑣 after accessing node 𝑒 .
𝑡𝑣𝑒 The time after vehicle 𝑣 accesses node 𝑒 .
𝑄𝑘𝑚 Load demand from dismantling factory 𝑘 to manu-

facturing factory 𝑚 .
4) Decision variables

135 Tan et al.: ADAPTIVE LARGE NEIGHBORHOOD SEARCH FOR COST-EFFECTIVE AND EFFICIENT DECENTRALIZED REMANUFACTURING

𝑥𝑝 𝑗𝑘𝑤 =


1, Product 𝑝 task 𝑗 assigned to dismantling factory 𝑘

workstation 𝑤 .

0, Others.

𝜃𝑒 𝑓 𝑣 =

{
1, If vehicle 𝑣 travels from node 𝑒 to node 𝑓 .

0, Others.

𝑦𝑘 =

{
1, Open dismantling factory 𝑘.

0, Others .

𝑍𝑝𝑘 =

{
1, If product 𝑝 is assigned to dismantling factory 𝑘 .

0, Others .

𝑈𝑘𝑤 =

{
1, Open the workstation 𝑤 for dismantling factory 𝑘 .

0, Others .

𝛼𝑘𝑚𝑝𝑖 =


1, Product 𝑝 component 𝑖 is transported from

dismantling factory 𝑘 to manufacturing fac-
tory 𝑚 .

0, Others

𝛽𝑘𝑚 =


1, There is a distribution task from dismantling

factory 𝑘 to manufacturing factory 𝑚 .

0, Others .

4) Objective of optimization
Based on the above symbols and decision variables, the

objective function and constraints of the I-MRPOP-DVRP
model for this problem are as follows.

max 𝑓 =
∑︁
𝑘∈K

∑︁
𝑚∈M

∑︁
𝑝∈P

∑︁
𝑖∈I

𝑣𝑚𝑝𝑖𝛼𝑘𝑚𝑝𝑖 −
∑︁
𝑣∈V

∑︁
𝑒∈N

∑︁
𝑓 ∈N

𝑑𝑒 𝑓 𝜃𝑒 𝑓 𝑣−∑︁
𝑘∈K

∑︁
𝑝∈P

∑︁
𝑗∈J𝑝

∑︁
𝑤∈W𝑘

𝑐𝐷𝑘𝑝 𝑗 𝑡𝑘𝑝 𝑗𝑥𝑝 𝑗𝑘𝑤 −
∑︁
𝑘∈K

𝑐𝑜𝑘𝑇𝑘−∑︁
𝑘∈K

∑︁
𝑤∈W𝑘

𝑐𝑘𝑤𝑢𝑘𝑤 .

(1)
The I-MRPOP-VRPPD mathematical model in this article

aims to maximize the expected profit of the entire network, and
formula (1) aims to maximize the benefits of disassembly and
minimize transportation costs. The dismantling cost includes
the fixed operating costs of the dismantling factory and its
related workstations, as well as the cost required to perform
the dismantling task.

5) Model Constraints

∑︁
𝑚∈M

𝛼𝑘𝑚𝑝 𝑗 ≤
∑︁

𝑤∈W𝑘

∑︁
𝑗∈J𝑝

𝑑𝑝𝑖 𝑗𝑥𝑝 𝑗𝑘𝑤 ,∀𝑘 ∈ K,∀𝑝 ∈ P,∀𝑖 ∈ Ip.

(2)∑︁
𝑘∈K

𝑧𝑝𝑘 = 1,∀𝑝 ∈ P. (3)

𝑧𝑝𝑘 ≤ 𝑦𝑘 ,∀𝑤 ⊆ 𝑊 𝑘 ,∀𝑘 ∈ K. (4)

𝑢𝑘𝑤 ≤ 𝑦𝑘 ,∀𝑤 ⊆ 𝑊 𝑘 ,∀𝑘 ∈ K. (5)

𝑥𝑝 𝑗𝑘𝑤 ≤ 𝑧𝑝𝑘 ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑃 ,∀𝑤 ⊆ 𝑊 𝑘 ,∀𝑘 ∈ K. (6)

𝑥𝑝 𝑗𝑘𝑤 ≤ 𝑢𝑘𝑤 ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑃 ,∀𝑤 ⊆ 𝑊 𝑘 ,∀𝑘 ∈ K. (7)∑︁
𝑘∈K

∑︁
𝑊∈W𝑘

𝑥𝑝 𝑗𝑘𝑤 ≤ 1,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑃 . (8)∑︁
𝐽∈J𝑃

𝑡𝑃 𝑗𝑥𝑝 𝑗𝑘𝑤 =≤ 𝑇 𝑘 ,∀𝑘 ∈ K,∀𝑤 ⊆ 𝑊 𝑘 . (9)

Constraint (2) ensures that only task components obtained
through disassembly can be allocated from the disassembly
factory to the remanufacturing factory constraint. Constraint
(3) ensures that only components obtained through disas-
sembly can be allocated from the disassembly factory to
the remanufacturing factory; Constraint (4) ensures that each
product can only be assigned to a specific dismantling factory;
Constraints (5) - (7) indicate that the product can only be
assigned to dismantling factory workstations that are in opera-
tion; Constraint (8) stipulates that each product’s disassembly
task can only be performed once; Constraint (9) limits the
working hours of each workstation in the dismantling line to
not exceed the specified cycle time.∑︁

𝑤∈W𝑘

𝑤(𝑥𝑝 𝑗𝑘𝑤 − 𝑥𝑝𝑞𝑘𝑤) +𝑊 𝑘 (
∑︁

𝑤∈W𝑘

𝑥𝑝𝑞𝑘𝑤 − 1) ≤ 0,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀ 𝑗 , 𝑞 ∈ J𝑃 , 𝑠𝑝 𝑗𝑞 = 1.
(10)

∑︁
𝑤∈W𝑘

𝑥𝑝𝑞𝑘𝑤 ≤
∑︁
𝑗∈J𝑃

∑︁
𝑤∈W𝑘

𝑥𝑝 𝑗𝑘𝑤𝑠𝑝 𝑗𝑞 ,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀ 𝑗 , 𝑞 ∈ J𝑃 , 𝑑𝑝𝑖𝑞 = 0.
.

(11)

∑︁
𝑤∈W𝑘

𝑥𝑝 𝑗𝑘𝑤 + 𝑥𝑝𝑞𝑘𝑤 ≤ 1,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀ 𝑗 , 𝑞 ∈ J𝑃 , 𝑟𝑝𝑖𝑞 = 1.
.

(12)

𝑧𝑝𝑘 ∈ (0, 1),∀𝑘 ∈ K,∀𝑝 ∈ P. (13)

𝑥𝑝 𝑗𝑘𝑤 ∈ (0, 1),∀ 𝑗 ∈ J𝑃 ,∀𝑘 ∈ K,∀𝑝 ∈ P,∀𝑤 ⊆ 𝑊 𝑘 . (14)

𝑦𝑘 ∈ (0, 1),∀𝑘 ∈ K. (15)

𝑢𝑘𝑤 ∈ (0, 1),∀𝑘 ∈ K,∀𝑝 ∈ P,∀𝑚 ∈ M,∀𝑖 ∈ I. (16)

𝛼𝑘𝑚𝑝𝑖 ∈ (0, 1),∀𝑘 ∈ K,∀𝑝 ∈ P. (17)

𝑇𝑘 ∈ R+,∀𝑘 ∈ K. (18)

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 136

Constraints (10) and (11) require that the disassembly task
allocation for each product must match its internal complexity
to meet priority requirements; Constraint (12) ensures that
the allocation of disassembly tasks meets conflict relationship
constraints; Constraints (13) - (18) define the range of values
for each decision variable.∑︁

𝑝∈P

∑︁
𝑖∈I𝑝

𝑤𝑘𝑚𝑝𝑖 = 𝑞𝑒, (19)

∀𝑘 ∈ K,∀𝑚 ∈ M,∀𝑒 ∈ P𝑛, |𝛽𝑘𝑚 = 1.
.

(20)

𝑞𝑒 ≤ 𝛽𝑘𝑚 ∗ 𝑀,∀𝑒 ∈ P𝑛, 𝜃𝑒 𝑓 𝑣 = 1,∀𝑒 ∈ P𝑛, |𝛽𝑘𝑚 = 1.
.

(21)∑︁
𝑓 ∈N

𝜃 𝑓 𝑒𝑣 −
∑︁
𝑓 ∈N

𝜃𝑒 𝑓 𝑣 = 0,∀𝑒 ∈ N
′
,∀𝑣 ∈ V. (22)∑︁

(𝑓 ∈P𝑁+2∗𝑛+1)
𝜃𝑜 𝑓 𝑣 = 1,∀𝑣 ∈ V. (23)∑︁

(𝑒∈D𝑁+0)
𝜃𝑒, 2 ∗ 𝑛 + 1, 𝑣 = 1,∀𝑣 ∈ V. (24)∑︁

(𝑒∈D𝑁+0)
𝜃𝑒, 2 ∗ 𝑛 + 1, 𝑣 = 1,∀𝑣 ∈ V. (25)∑︁

𝑓 ∈N
(𝜃𝑒 𝑓 𝑣 − 𝜃 𝑓 ,𝑛+𝑒,𝑣) = 0,∀𝑒 ∈ P𝑛,∀𝑣 ∈ V. (26)

𝑄𝑣
𝑒 + 𝑞 𝑓 −𝑄𝑣

𝑓 ≤ 𝑀 ∗ (1 − 𝜃𝑒 𝑓 𝑣),∀𝑒, 𝑓 ∈ N,∀𝑣 ∈ V.

.
(27)

𝑞𝑒 ≤ 𝑄𝑣
𝑒 ≤ 𝑄𝑣 ,∀𝑣 ∈ V.

.
(28)

𝑄𝑣
0 = 0,∀𝑣 ∈ V.

.
(29)

𝑇 𝑣
𝑒 + 𝑡𝑒 𝑓 − 𝑇 𝑣

𝑓 ≤ 𝑀 ∗ (1 − 𝜃𝑒 𝑓 𝑣),∀𝑒, 𝑓 ∈ N,∀𝑣 ∈ V.

.
(30)

𝑇 𝑣
𝑒 + 𝑡 (𝑒,𝑛+𝑒) ≤ 𝑇 𝑣

𝑛+𝑒,∀𝑒 ∈ P𝑛,∀𝑣 ∈ V.

.
(31)

𝜃𝑒 ∈ (0, 1), 𝑓𝑣 ∈ (0, 1),∀𝑒, 𝑓 ∈ N,∀𝑣 ∈ V.

.
(32)

𝑄𝑣
𝑒 ≥ 0,∀𝑒 ∈ N,∀𝑣 ∈ V.

.
(33)

𝑇 𝑣
𝑒 ≥ 0,∀𝑒 ∈ N,∀𝑣 ∈ V.

.
(34)

Constraint (19) is used to determine the load request of the
picking node; Constraint (20) connects two symbol systems,
representing the allocation relationship between disassembly
factory K and manufacturing factory M; Constraint (21)

ensures that each request is only accessed once; Constraint
(22) ensures flow conservation and path continuity, requiring
vehicles to meet both entry and exit conditions at node e;
Constraints (23) and (24) ensure that each vehicle departs from
the starting point and arrives at the destination, respectively;
Constraint (25) ensures that pickup and delivery nodes related
to the same request are served by the same vehicle; Constraint
(26) ensures that the vehicle updates the load correctly during
its operation, where M is a sufficiently large positive integer;
Constraints (27) and (28) respectively prevent vehicles from
exceeding their maximum load capacity when passing through
pickup and delivery nodes; Constraint (29) requires an initial
load of 0 for each vehicle; Constraint (30) ensures that the
time for the vehicle to reach the subsequent node is at least
the sum of the arrival time of the previous node and the
travel time between two points; Constraint (31) ensures that
the pickup node of the same request receives service before
the corresponding delivery node; Finally, constraints (32) -
(34) provide the range of values for each decision variable.

III. ALGORITHM DESIGN

The core idea of ALNS is to use a series of designed
destroy operators and repair operators to perform large-scale
perturbations on a feasible solution, thereby escaping from
local optima. Unlike traditional genetic algorithms that rely on
crossover operations, ALNS mainly focuses on local and large-
scale destruction and reconstruction of individual solutions,
and improves search efficiency by adaptively adjusting the
frequency of use of each operator.As shown in Fig. 3

A. ALNS framework

Algorithm 1 Adaptive Large Neighborhood Search

Input: 𝑠∗ ← feasible initial solution; 𝑅𝐸𝑀 ← set of removal
operators; 𝐼𝑁𝑆 ← set of insertion operators; 𝑞 ← number
of requests to be removed; maxIter ← maximum iterations

Output: Optimized solution 𝑠∗

Begin
for iteration = 1 to maxIter do

Select removal operator from REM and insertion operator
from INS
(𝑠′ , 𝑅removed) ← Remove(𝑠, 𝑞)
𝑠
′ ← Insert(𝑠′ , 𝑅removed)

if 𝑓 (𝑠′) < 𝑓 (𝑠∗) then
𝑠∗ ← 𝑠

′

end if
if acceptance criterion met then

𝑠← 𝑠∗

end if
if iteration mod segIter = 0 then

Update operator scores in REM and INS
end if

end for
return 𝑠∗

End

137 Tan et al.: ADAPTIVE LARGE NEIGHBORHOOD SEARCH FOR COST-EFFECTIVE AND EFFICIENT DECENTRALIZED REMANUFACTURING

Fig. 3. Specific execution scenarios of the ALNS algorithm

B. Delete heuristic

This section introduces three different removal heuristic
methods: 1) random removal: 2) Shaw removal considering
priority: 3) worst removal. Each heuristic uses unique criteria
to determine which requests need to be removed, and defines
a function in Algorithm 1. This function takes a feasible
solution 𝑠 and an integer 𝑞 as inputs, and outputs a partial
solution 𝑠 (in which 𝑞 requests have been removed) and
the set of removed requests. It is more preferable to remove
requests that are close to each other at the same time rather
than removing requests from each path individually or in
pairs. The Shaw removal method aims to remove requests
that are highly similar in a single iteration by quantifying the
similarity between pairs of requests. Ropke and Pisinger et
al.[32] studied an extended framework for the Adaptive Large
Neighborhood Search (ALNS) algorithm, improved the Shaw
removal heuristic, and enhanced search diversity by prioritiz-
ing customer similarity; Christiaansen et al.[33] embedded a
multi-attribute priority scoring system in the ALNS disruption
stage for the Vehicle Routing Problem with Time Window
(VRPTW) to reduce the proportion of delayed orders

Algorithm 2 Shaw Removal with Priority (Solution 𝑠, 𝑞)

Input: Feasible solution 𝑠, number of requests to be removed
𝑞

Output: Partial demodulated solution 𝑠′

Randomly select a request 𝑟 as the initial removal request
Set 𝑅removed = {𝑟}
while |𝑅removed | < 𝑞 do

Select a random request 𝑟 ′ from 𝑅removed
Generate unremoved request list 𝐿
Sort 𝐿 in ascending order of request similarity 𝑅(𝑟, 𝑟 ′)
Generate random number 𝑦 ∈ (0, 1)
Select request 𝑟 at index position ⌊𝑦𝑝 · |𝐿 |⌋ in 𝐿

𝑅removed = 𝑅removed ∪ {𝑟}
end while
𝑠′ = Remove(𝑠, 𝑅removed)
if 𝑅removed is not empty then

return 𝑠′

else
return Empty solution

end if

The request cost 𝑟 is defined as the difference between the
total objective function values that include the pick-up and
drop-off pairs that do not include the request, and is denoted
as:

Δ 𝑓𝑟 = 𝑓 (𝑠) − 𝑓 −𝑟 (𝑠) (35)

where 𝑠 is the current solution, 𝑓 is the objective function,
and 𝑓 −𝑟 (𝑠) is the target value after the request 𝑟 is removed
from 𝑠. A large Δ 𝑓𝑟 value indicates that request 𝑟 is in a
disadvantageous position, implying that an improved solution
is more likely to be found by substituting such a request. The
worst-case removal algorithm is designed to identify and re-
move requests with a significant value of Δ 𝑓𝑟 in each iteration.
Algorithm 3 gives a specific process for the algorithm, which
is similar to the Shaw removal algorithm that takes priority
into account, but the key difference is that the requests are
sorted in descending order of request cost in each iteration.

Similar to the Shaw removal algorithm that takes priority
into account, the worst removal algorithm introduces a random
parameter 𝑝 to increase randomness. This randomness is
essential to prevent the algorithm from repeatedly trying to
remove the same set of requests in successive iterations, thus
ensuring efficient exploration of the neighborhood space.

Algorithm 3 Worst Removal (Solution 𝑠, 𝑞)

Input: Feasible solution 𝑠, number of requests to be removed
𝑞

Output: Partial solution 𝑠′ and removal request set 𝑅removed
𝑅removed = ∅
while |𝑅removed | < 𝑞 do

Generate unremoved request list 𝐿
Sort 𝐿 in descending order of incremental cost Δ 𝑓 (𝑟)
Generate random number 𝑦 ∈ (0, 1)
Select request 𝑟 at index position ⌊𝑦𝑝 · |𝐿 |⌋ in 𝐿

𝑅removed = 𝑅removed ∪ {𝑟}
end while
𝑠′ = Remove(𝑠, 𝑅removed)
return 𝑠′, 𝑅removed

C. Insert heuristics

This section provides a detailed description of various
insertion heuristics, each of which introduces a set of rules
to determine the position for inserting requests, and defines
function insert(𝑠

′
,𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑) in Algorithm 1. These methods

take a partial solution 𝑠
′

and the request set 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 as input,
and output a solution after reinserting the requests.

The Simple Greedy Insertion (SGI) algorithm is designed to
identify the best request that increases the least on the value of
the objective function in each iteration. In this algorithm, the
insertion cost Δ 𝑓𝑟 ,𝑘 represents the minimum increase in the
objective function resulting from inserting the requestr into
path 𝑘 . Algorithm 4 outlines the process for achieving that
goal. In the initial phase, the cost of inserting each request
into each path was calculated; The request 𝑟∗ with the lowest
insertion cost is then inserted into the partial solution and
the request is removed from the collection of unprocessed
requests. If there are still requests that fail to be inserted
successfully, an empty solution is returned, indicating that the
algorithm has failed to construct a feasible solution. Otherwise,
the output is descripted as 𝑠.

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 138

Algorithm 4 Simple Greedy Insert (Solution 𝑠, 𝑅removed)

Input: Feasible solution 𝑠, Set of removed requests 𝑅removed
Output: Updated solution 𝑠′

if 𝑅removed = ∅ then
return 𝑠 {No requests to insert}

else
𝑠′ ← 𝑠

for each request 𝑟 in 𝑅removed do
minCost←∞
bestPosition← null
bestRoute← null
for each route 𝑘 in solution 𝑠′ do

Calculate insertion cost Δ 𝑓 (𝑟, 𝑘) for all feasible
positions in route 𝑘

if feasible insertion positions exist then
Find position with minimal cost Δ 𝑓min (𝑟, 𝑘)
if Δ 𝑓min (𝑟, 𝑘) < minCost then

minCost← Δ 𝑓min (𝑟, 𝑘)
bestPosition← position with min cost
bestRoute← 𝑘

end if
end if

end for
if bestRoute ≠ null then

Insert request 𝑟 into bestRoute at bestPosition
else
{No feasible insertion found for request 𝑟}

end if
end for
return 𝑠′

end if

However, the SGI heuristic only considers the effect of a
single step after insertion, which has a limited field of view,
which often leads to the high cost of some “bad” requests
in the later stage of insertion. In contrast, the Regret Insert
strategy extends the evaluation to multiple subsequent steps
(i.e., the Regret-m Insert method) to make more informed
decisions.

Santini et al.[34] compared the performance of different
order regret values (k-regret) in vehicle routing problems
and proposed for the first time a dynamic order adjustment
mechanism to improve the quality of solutions and compu-
tational efficiency. Zhou et al.[35] designed a multi node
collaborative regret insertion strategy for the electric vehicle
routing problem, which solved the problem of calculating
regret values with multiple constraints in the electric vehicle
routing. Wang et al.[36] combined regret insertion with deep
reinforcement learning and proposed a state aware regret
function to dynamically adjust order insertion priority.

The regret value is used to quantify the degree of degrada-
tion that may result from delaying the insertion of a request,
so as to give preference to requests with higher regret values;
If there is the same regret value, the request with the lower
insertion cost is preferred. It is important to note that the
SGI actually corresponds to the Regret-1 Insert in that it only
performs a single-step evaluation at the time of insertion.

In order to handle requests with limited possible insert
locations, we set Δ 𝑓𝑟𝑘𝑛 = 𝑀 to prioritize those requests that
have fewer feasible insert locations. The overall process is
similar to a simple greedy insertion, except that in line 10 the
request is selected to make the regret value 𝑐𝑟 the largest.

In this study, the set of insertion operators consists of Regret
1 (simple greed) Regret-2, Regret-3, Regret-4, and .

D. The acceptance criteria are based on linear threshold
acceptance

The acceptance criteria used in this study are derived
from linear Threshold Acceptance (TA), with a termination
temperature set to 0. The temperature threshold italic is used
to determine whether the difference in the objective function
is acceptable. In each iteration, the improved neighborhood
solution is always accepted; If the degenerate solution satisfies
[𝑓 (𝑠′) − 𝑓 (𝑠∗)]/ 𝑓 (𝑠∗) < 𝑇 , it will also be accepted. The
initial temperature italic is set to 𝑇𝑠𝑡𝑎𝑟𝑡 , and the rate of
△𝑇 = 𝑇𝑠𝑡𝑎𝑟𝑡/𝑚𝑎𝑥𝐼𝑡𝑒𝑟 gradually decreases.

Linear TA has been proven to have high computational
efficiency and can generate high-quality solutions. Another
commonly used acceptance criterion comes from simulated
annealing (SA), which always accepts the better solution,
while the degenerate solution is accepted with probability
𝑒−((𝑓 (𝑠)− 𝑓 (𝑠))/𝑇) . Santini et al. pointed out that in the Adaptive
Large Neighborhood Search (ALNS) framework, the perfor-
mance of the two criteria is comparable. The reason for
choosing TA in this study is:

1) The threshold is relatively intuitive: acceptance can be
directly judged by the threshold T, without the need to
generate random numbers and calculate probabilities.

2) Parameter tuning is simple: simply adjust the initial
temperature to determine the cooling rate.

We have studied the influence of initial temperature on the
search process. In Fig. 4, the target values of the accepted
solution (current target) and the target values of the best
solution to date are plotted. Several observation results can
be obtained.Firstly, the target value of the accepted solution
decreases linearly due to the linear decrease of the threshold
T. Secondly, every time the current target value and the optimal
solution target value coincide, the global optimal target value
will be updated. At the beginning of the search process, when
the quality of the solution is not high, the update frequency is
higher. Finally, when 𝑇𝑠𝑡𝑎𝑟𝑡 is low, The local search process
accepts fewer solutions, as can be seen from the increased
sparsity in Figs. 4 - 6. A lower threshold requires solutions
with a smaller target gap to be accepted.

E. Adaptive weight adjustment

For each operator i in the removal and insertion operator
sets, a weight 𝑤𝑖 will be assigned. The operator selection
adopts the roulette wheel selection principle, so that the
probability of operator i being selected is 𝑤𝑖/

∑
𝑖∈o 𝑤𝑖 , where

0=REM or 0=INS.
In each iteration, the score Π𝑖 of operator i will be updated

based on the quantities determined by parameters 𝜎1, 𝜎2, and
𝜎3 in different scenarios:

139 Tan et al.: ADAPTIVE LARGE NEIGHBORHOOD SEARCH FOR COST-EFFECTIVE AND EFFICIENT DECENTRALIZED REMANUFACTURING

Fig. 4. The optimal solution and the currently accepted
solution during the iterative process at 𝑇𝑠𝑡𝑎𝑟𝑡=0.08

Fig. 5. The optimal solution and the currently accepted
solution during the iterative process at 𝑇𝑠𝑡𝑎𝑟𝑡=0.04

1) If the new solution produces a new global optimal solu-
tion to date, then add 𝜎1.

2) If the new solution improves the target value and was not
previously accepted, add 𝜎2.

3) If the new solution was not accepted before, but was
accepted when the target value decreased, then add 𝜎3.

The entire search process is divided into several stages. At
the beginning of each stage, the scores of all operators are
reset to 0. At the end of each stage, update the weights using
the following formula:

𝑤𝑖, 𝑗+1 = (1 − 𝑟)𝑤𝑖, 𝑗 + 𝑟 ∗ 𝜋𝑖/𝜃𝑖 . (36)

Among them,𝑤𝑖, 𝑗 is the weight of operator i in stage j,𝜋𝑖
is the score obtained by operator i in this stage, and 𝜃𝑖 is the
number of times operator i is used in this stage.

IV. SIMULATION EXPERIMENT AND ANALYSIS

To evaluate the accuracy of the model and the effectiveness
of the proposed algorithm, an experimental case was solved
using IBM ILOG CPLEX Optimization Studio to obtain the
standard optimal solution, and the same case was solved

Fig. 6. The optimal solution and the currently accepted
solution during the iterative process at 𝑇𝑠𝑡𝑎𝑟𝑡=0.02

using ALNS algorithm in IntelliJ IDEA 2024.3.1.1 * 64
integrated development environments to compare the exper-
imental results. The calculation experiment was conducted on
a computer equipped with Intel (R) Core (TM) i9-13900HX
processor (operating frequency 5.40GHz) and 32.00GB RAM.

A. Test Case

To make the experimental research more comprehensive,
three different product sizes were selected: washing machine,
computer, and radio. We create multiple product cases for
testing by combining these products with different config-
urations. Table I provides specific size information for the
combination cases. In terms of work environment, three dis-
mantling factories and three manufacturing factories have been
established, with a maximum of five workstations on each
factory’s dismantling line. The specific product parameter
settings are shown in Table I, and the experimental test case
information is shown in Table II. Among them, cases 1-4
are small-scale dismantling cases, while cases 5-7 are large-
scale dismantling cases. The profit generated from recycling
parts may fluctuate depending on the unique location of each
factory in the remanufacturing multi-factory setup. Due to
different disassembly products, the related disassembly tasks
and profitable parts will also be different. This diversity reflects
the complexity of the dismantling process and its potential
profitability.

TABLE I Product information.

Disassemble
the product

Number
of tasks

Number of
components

Dismantling
profit(RMB)

Component
weight(KG)

Disassem-
bly time(s)

Computer 13 25 102-166 6-41 5-11
Washing
machine 13 15 106-179 3-33 4-10

Radio 30 29 63-162 5-74 4-11

B. Experimental Results And Algorithm Performance Analysis

We tested the experimental case using CPLEX, and the
results are shown in Table III.Case 7 of the Multi- Factory
Remanufacturing Process Optimization Problem (MRPOP)

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 140

TABLE II Case information

Case
Number

Number of
products

Product Dismantling
factories

Remanufact-
uring factories

Number
of tasks

Number of
components

Component
profit(RMB)

Computer Washing
machine Radio

1 2 1 1 0 2 2 43 44 208-345
2 3 1 1 1 2 2 56 69 271-507
3 4 2 1 1 3 3 69 94 373-673
4 5 2 2 1 3 3 82 109 479-852
5 6 2 2 2 3 3 112 138 542-1014
6 9 3 3 3 3 3 168 207 813-1521
7 10 3 3 4 3 3 198 236 876-1668

involves 10 products: 3 washing machines, 3 computers, and
4 radios. The experimental results are shown in Table III and
Fig. 7. Product A is assigned to disassembly center B for
disassembly. Component 2 disassembled from product C is
transported to manufacturing center D, while components 7,
11, and 12 are transported to manufacturing factory E. Fig. 7
visually illustrates the complete workflow of case 5.

TABLE III CPLEX solution results

Product
ID

Dismantling
factory
allocation

Distribution of
remanufacture
factories

Factory
transportation
weight

1 2 <2→2>/<7,11,12→3> 8→2,5→3
2 3 <2,3→2> 33→2
3 2 <8,11→1>/<2,13,14,15→3> 11→1,2→3
4 3 <9,12→2>/<7,10→3> 19→2,22→3
5 3 <9,11,12→2>/<10,13→3> 26→2,15→3
6 3 <5,9,13→3> 41→3
7 2 <2,23→1> 74→1
8 1 <9,19,23,24,26→1> 79→1
9 1 <2,23→1> 74→1

10 1 <9,19,23,24,26→1> 79→1

By comparison, it was found that CPLEX’s results were
only based on the profit of the components provided by the
manufacturing factory for the distribution and transportation of
disassembled components, indicating significant deficiencies
in its comprehensive transportation process. Thus we take the
one-stage MRPOP scheduling scheme as the optimal solution
obtained by re inputting the required parameters for solving the
two-stage delivery vehicle routing problem (VRPPD) model.
The case parameters are shown in Table IV.

The comparison between Fig. 7 and Fig. 8 clearly shows that
compared with the first stage CPLEX solution, the two-stage
DVRP transportation model considers the load integration of
transportation vehicles, which can integrate multiple batches
of parts and deliver them to the dismantling manufacturing
factory in sequence. After optimization, it significantly reduces
distribution costs, total vehicle travel distance, and required
vehicle quantity. This is more in line with the actual benefit re-
quirements of the multi-factory remanufacturing environment.

C. Algorithm validation of cases of different scales

To verify the performance of the proposed ALNS frame-
work in solving VRPPD, smaller scale instances were gener-
ated and evaluated. Compare the results with those obtained
by CPLEX within a time limit of 120 minutes. The objective
function of the two-stage model is to maximize revenue
and minimize transportation costs. The experiment randomly
selects N pairs of requests from the adjusted project instances

to form a smaller dataset.Experiments were conducted on
instances with N values of 5, 10, and 15, and the results are
shown in Tables V, VI, and VII, respectively.

For small-scale cases with N=5, the target values calculated
by CPLEX and ALNS are consistent, and CPLEX’s calculation
time is slightly better than ALNS. However, ALNS can still
obtain the optimal solution for all instances at a relatively fast
speed. When N=10, ALNS found a better solution within 5
seconds in 6 cases, and performed the best in case 3, where
CPLEX took 2044.5 times longer to calculate the target value
than ALNS. In two cases, CPLEX failed to find the optimal
solution within the 60-minute time limit. In the case of finding
the optimal solution, ALNS is 145.8 to 2044.5 times faster
than CPLEX. In other cases, both ALNS and CPLEX can
find the optimal solution, but ALNS is faster. In addition,
in experiments with N=10 and 15, ALNS requires much
faster computation time than CPLEX, and the difference in
computation time also increases as the problem size increases.
When N=15, CPLEX can only solve 5 cases, and Case 2
cannot obtain a solution within the limited 120-minutes, while
ALNS can find feasible solutions for all instances without a
significant increase in computation time. In Case 3 and Case 4,
there is a significant difference in the target value of CPLEX
compared to ALNS, which effectively proves the superiority of
the ALNS algorithm. Due to the fact that the results obtained
by ALNS in all instances are the same as the optimal target
value successfully found in CPLEX, the target value obtained
by ALNS in large-scale cases is better than that of CPLEX
under a limited running time of 120-minutes. Therefore, it can
be concluded that the proposed ALNS has robustness when
applied to the model proposed in this study, and ALNS has
higher computational efficiency and robustness in experiments
with larger scale problems.

TABLE IV CPLEX solves transportation plan information

Demand Task Node Weight requirement Service Time(s) Coordinate
starting point S 0 0 (35, 35)

1 1 232 30 (92, 81)
1 -232 30 (44, 87)

2 2 85 10 (20, 88)
1 -85 10 (44, 87)

3 2 8 10 (20, 88)
2 -8 10 (98, 50)

4 2 47 10 (20, 88)
3 -47 10 (22, 32)

5 3 78 10 (16, 12)
2 -78 10 (98, 50)

6 3 78 10 (16, 12)
3 -78 10 (22, 32)

End E 0 0 (35, 35)

141 Tan et al.: ADAPTIVE LARGE NEIGHBORHOOD SEARCH FOR COST-EFFECTIVE AND EFFICIENT DECENTRALIZED REMANUFACTURING

Fig. 7. One-stage disassembly scheduling transport scheme

Fig. 8. Two-stage optimal disassembly and distribution scheme.

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING, VOL. 1, NO. 3, SEPTEMBER 2025 142

TABLE V Comparison of results between CPLEX and
ALNS N=5

Test Examples Target value Running time (s)
CPLEX ALNS CPLEX ALNS

1 196.499 196.499 0.693 1.14
2 265.647 265.647 0.479 1.13
3 211.094 211.094 0.204 0.71
4 275.335 275.335 0.305 1.01
5 518.822 518.822 0.207 0.83
6 356.407 356.407 0.506 1.23

TABLE VI Comparison of results between CPLEX and
ALNS N=10

Test Examples Target value Running time (s)
CPLEX ALNS CPLEX ALNS

1 781.062 763.768 *7200 4.15
2 633.427 603.877 *7200 1.59
3 354.714 354.714 1921.5 0.97
4 547.470 547.470 720.47 4.94
5 433.965 433.965 504.31 1.64
6 326.235 326.235 1260.59 3.59

V. CONCLUSION

This paper investigates a two-stage I-MRPOP-DVRP prob-
lem that considers the planning of delivery vehicles. The op-
timization problem of multi-factory remanufacturing process
is a research hotspot in the field of supply chain. This article
proposes for the first time the multi-factory remanufacturing
process optimization problem I-MRPOP-DVRP considering
delivery services, and establishes a mixed integer program-
ming model aimed at maximizing profits to describe this
problem. Decompose the problem into two sub problems:
overall disassembly scheduling and optimal transportation
route planning. In the future, we will continue to study two-
stage problems. Unlike this article, the decisions in the first
stage will affect the decisions in the second stage, and the
decisions in the second stage will be iterated back to the first
stage[37].

REFERENCES

[1] Y. Ji, S. Liu, M. Zhou, Z. Zhao, X. Guo, and L. Qi, “A machine learning
and genetic algorithm-based method for predicting width deviation of
hot-rolled strip in steel production systems,” Information Sciences, vol.
589, pp. 360–375, 2022.

[2] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, “Heuristic scheduling
of batch production processes based on petri nets and iterated greedy al-
gorithms,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 1, pp. 251–261, 2022.

[3] Z. Zhao, M. Zhou, and S. Liu, “Iterated greedy algorithms for flow-shop
scheduling problems: A tutorial,” IEEE Transactions on Automation
Science and Engineering, vol. 19, no. 3, pp. 1941–1959, 2022.

[4] Z. Zhao, S. Liu, M. Zhou, and A. Abusorrah, “Dual-objective mixed
integer linear program and memetic algorithm for an industrial group
scheduling problem,” IEEE/CAA Journal of Automatica Sinica, vol. 8,
no. 6, pp. 1199–1209, 2022.

[5] Z. Zhao, S. Liu, M. Zhou, X. Guo, and L. Qi, “Decomposition method
for new single-machine scheduling problems from steel production
systems,” IEEE Transactions on Automation Science and Engineering,
vol. 17, no. 3, pp. 1376–1387, 2019.

[6] X. Cui, X. Guo, M. Zhou, J. Wang, S. Qin, and L. Qi, “Discrete
whale optimization algorithm for disassembly line balancing with carbon
emission constraint,” IEEE Robotics and Automation Letters, vol. 8,
no. 5, pp. 3055–3061, 2023.

[7] S. Qin, J. Li, J. Wang, X. Guo, S. Liu, and L. Qi, “A salp swarm
algorithm for parallel disassembly line balancing considering workers

TABLE VII Comparison of results between CPLEX and
ALNS N=15

Test Examples Target value Running time (s)
CPLEX ALNS CPLEX ALNS

1 572.504 557.224 *7200 1.11
2 ——— 659.206 *7200 1.96
3 2824.479 611.233 *7200 5.59
4 902.876 544.052 *7200 4.91
5 1253.413 986.798 *7200 1.82
6 1216.911 1049.695 *7200 3.15

with government benefits,” IEEE Transactions on Computational Social
Systems, 2023.

[8] S. Qin, S. Zhang, J. Wang, S. Liu, X. Guo, and L. Qi, “Multi-
objective multi-verse optimizer for multi-robotic u-shaped disassembly
line balancing problems,” IEEE Transactions on Artificial Intelligence,
2023.

[9] X. Guo, C. Fan, M. Zhou, S. Liu, J. Wang, S. Qin, and Y. Tang, “Human–
robot collaborative disassembly line balancing problem with stochastic
operation time and a solution via multi-objective shuffled frog leaping
algorithm,” IEEE Transactions on Automation Science and Engineering,
2023.

[10] X. Guo, Z. Bi, J. Wang, S. Qin, S. Liu, and L. Qi, “Reinforcement
learning for disassembly system optimization problems: A survey,”
International Journal of Network Dynamics and Intelligence, pp. 1–14,
2023.

[11] X. Guo, T. Wei, J. Wang, S. Liu, S. Qin, and L. Qi, “Multiobjective u-
shaped disassembly line balancing problem considering human fatigue
index and an efficient solution,” IEEE Transactions on Computational
Social Systems, 2022.

[12] X. Guo, Z. Zhang, L. Qi, S. Liu, Y. Tang, and Z. Zhao, “Stochastic
hybrid discrete grey wolf optimizer for multi-objective disassembly
sequencing and line balancing planning in disassembling multiple
products,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 3, pp. 1744–1756, 2021.

[13] X. Guo, M. Zhou, A. Abusorrah, F. Alsokhiry, and K. Sedraoui, “Disas-
sembly sequence planning: a survey,” IEEE/CAA Journal of Automatica
Sinica, vol. 8, no. 7, pp. 1308–1324, 2020.

[14] X. Guo, M. Zhou, S. Liu, and L. Qi, “Multiresource-constrained selective
disassembly with maximal profit and minimal energy consumption,”
IEEE Transactions on Automation Science and Engineering, vol. 18,
no. 2, pp. 804–816, 2020.

[15] X. Guo, Z. Zhang, L. Qi, S. Liu, Y. Tang, and Z. Zhao, “Stochastic
hybrid discrete grey wolf optimizer for multi-objective disassembly
sequencing and line balancing planning in disassembling multiple
products,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 3, pp. 1744–1756, 2022.

[16] Y. Tan, M. Zhou, Y. Wang, X. Guo, and L. Qi, “A hybrid mip–cp
approach to multistage scheduling problem in continuous casting and
hot-rolling processes,” IEEE Transactions on Automation Science and
Engineering, vol. 16, no. 4, pp. 1860–1869, 2019.

[17] Y. Fu, M. Zhou, X. Guo, and L. Qi, “Scheduling dual-objective
stochastic hybrid flow shop with deteriorating jobs via bi-population
evolutionary algorithm,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 50, no. 12, pp. 5037–5048, 2019.

[18] L. Huang, M. Zhou, K. Hao, and E. Hou, “A survey of multi-robot
regular and adversarial patrolling,” IEEE/CAA Journal of Automatica
Sinica, vol. 6, no. 4, pp. 894–903, 2019.

[19] Y. Tan, M. Zhou, Y. Zhang, X. Guo, L. Qi, and Y. Wang, “Hybrid
scatter search algorithm for optimal and energy-efficient steelmaking-
continuous casting,” IEEE Transactions on Automation Science and
Engineering, vol. 17, no. 4, pp. 1814–1828, 2020.

[20] L. Qi, W. Luan, X. S. Lu, and X. Guo, “Shared p-type logic petri net
composition and property analysis: A vector computational method,”
IEEE Access, vol. 8, pp. 34 644–34 653, 2020.

[21] K. Zhang, Y. Su, X. Guo, L. Qi, and Z. Zhao, “Mu-gan: Facial attribute
editing based on multi-attention mechanism,” IEEE/CAA Journal of
Automatica Sinica, vol. 8, no. 9, pp. 1614–1626, 2020.

[22] Y. Fu, M. Zhou, X. Guo, and L. Qi, “Stochastic multi-objective in-
tegrated disassembly-reprocessing-reassembly scheduling via fruit fly
optimization algorithm,” Journal of Cleaner Production, vol. 278, p.
123364, 2021.

[23] Z. Bi, X. Guo, J. Wang, S. Qin, and G. Liu, “Deep reinforcement
learning for truck-drone delivery problem,” Drones, vol. 7, no. 7, p.

143 Tan et al.: ADAPTIVE LARGE NEIGHBORHOOD SEARCH FOR COST-EFFECTIVE AND EFFICIENT DECENTRALIZED REMANUFACTURING

445, 2023.
[24] J. Gu, J. Wang, X. Guo, G. Liu, S. Qin, and Z. Bi, “A metaverse-based

teaching building evacuation training system with deep reinforcement
learning,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 53, no. 4, pp. 2209–2219, 2023.

[25] J. Wang, “Patient flow modeling and optimal staffing for emergency de-
partments: A petri net approach,” IEEE Transactions on Computational
Social Systems, vol. 10, no. 4, pp. 2022–2032, 2023.

[26] J. Wang and J. Wang, “Real-time adaptive allocation of emergency
department resources and performance simulation based on stochastic
timed petri nets,” IEEE Transactions on Computational Social Systems,
vol. 10, no. 4, pp. 1986–1996, 2023.

[27] J. Zhou, J. Wang, and J. Wang, “A simulation engine for stochastic timed
petri nets and application to emergency healthcare systems,” IEEE/CAA
Journal of Automatica Sinica, vol. 6, no. 4, pp. 969–980, 2019.

[28] H. Han, W. Li, J. Wang, G. Qin, and X. Qin, “Enhance explainability
of manifold learning,” Neurocomputing, vol. 500, pp. 877–895, 2022.

[29] W. Zhang, J. Wang, and F. Lan, “Dynamic hand gesture recognition
based on short-term sampling neural networks,” IEEE/CAA Journal of
Automatica Sinica, vol. 8, no. 1, pp. 110–120, 2020.

[30] J. Wang, “Charging information collection modeling and analysis of
GPRS networks,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 37, no. 4, pp. 473–481, 2007.

[31] Y. Tian, G. Liu, J. Wang, and M. Zhou, “ASA-GNN: Adaptive sam-
pling and aggregation-based graph neural network for transaction fraud
detection,” IEEE Transactions on Computational Social Systems, vol. 11,
no. 3, pp. 3536–3549, 2024.

[32] B. Hu and J. Wang, “Deep learning based hand gesture recognition and
uav flight controls,” International Journal of Automation and Computing,
vol. 17, no. 1, pp. 17–29, 2020.

[33] L. Qi, L. Liang, W. Luan, T. Lu, X. Guo, and Q. T. A. Talukder,
“Integrated control strategies for freeway bottlenecks with vehicle
platooning,” International Journal of Artificial Intelligence and Green
Manufacturing, vol. 1, no. 1, pp. 46–56, 2025.

[34] X. Guo, M. Zhou, S. Liu, and L. Qi, “Lexicographic multiobjective
scatter search for the optimization of sequence-dependent selective
disassembly subject to multiresource constraints,” IEEE Transactions
on Cybernetics, vol. 50, no. 7, pp. 3307–3317, 2020.

[35] J. Gu, Z. Guo, J. Wang, L. Qi, S. Qin, and S. Zhang, “Optimization
of multi-factory remanufacturing processes with shared transportation
resources using the alns algorithm,” International Journal of Artificial
Intelligence and Green Manufacturing, vol. 1, no. 1, pp. 1–13, 2025.

[36] N. Yang, Z. Zheng, M. Zhou, and et al., “A domain-guided noise-
optimization-based inversion method for facial image manipulation,”
IEEE Transactions on Image Processing, vol. 30, pp. 6198–6211, 2021.

[37] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, “Heuristic scheduling
of batch production processes based on petri nets and iterated greedy al-
gorithms,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 1, pp. 251–261, 2022.

YuanYuan Tan received her B.S. degree in in-
formation and computing science from Bohai Uni-
versity, Jinzhou, China, in 2007, M.S. degree and
Ph. D. degree in the College of Information Sci-
ence and Engineering from Northeastern University,
Shenyang, China, in 2009 and 2013 respectively.
She is currently an associate professor of the School
of Artificial Intelligence at Shenyang University of
Technology. Her research focuses on scheduling and
production planning, and intelligent optimization
algorithms. She has published over several journal

and conference proceedings papers in the above research areas.

Zihao Wei received his degree in computer science
and technology from Anyang Institute of Technol-
ogy in China, in 2023. Now he is a graduate stu-
dent of College of Artificial Intelligence and Soft-
ware,Liaoning University of Petrochemical Technol-
ogy. His main research direction is reinforcement
learning.

Haibin Zhu is a Full Professor at Nipissing Uni-
versity, Canada. He is also an affiliate full profes-
sor of Concordia Univ. and an adjunct professor
of Laurentian Univ., Canada. He has accomplished
over 300+ research publications, including 60+ IEEE
Transactions articles. He is a fellow of IEEE, AAIA
(Asia-Pacific Artificial Intelligence Association) and
I2CICC (International Institute of Cognitive Infor-
matics and Cognitive Computing), a senior member
of ACM. He is Vice President, Systems Science
and Engineering (SSE) (2023-), a co-chair (2006-)

of the technical committee of Distributed Intelligent Systems, and a Distin-
guished Lecturer of IEEE Systems, Man and Cybernetics Society (SMCS),
Associate Editor (AE) of IEEE Transactions on SMC: Systems (2018-),
IEEE Transactions on Computational Social Systems (2018-), IEEE Systems
Journal (2024-), Frontiers of Computer Science (2021-), IEEE Canada Review
(2017-), and Deputy Editor-in-Chief of Artificial Intelligence Science and
Engineering (2025-). He was General Chair: E-CARGO 2025, China, 2024,
China, 2023, online, ScalCom 2023, UK; ISEEIE 2023, Singapore, SPCS
2022, China, ICCSIT 2021, France, and Program Chair: ICFTIC 2025, 2024,
China, CSCWD 2020, CSCWD 2018, China, ICNSC 2019, and CSCWD
2013, Canada. He is the founding researcher of Role-Based Collaboration
and the creator of the E-CARGO model. He has offered 38 keynote speeches
for international conferences and 93 invited talks internationally.

Behzad Akbari is an IEEE member who earned
his bachelor’s and master’s degrees in Computer
Software and Computer Architecture from Tehran
University and Knowledge and Research University,
Iran, in 1996 and 1999, respectively. He contin-
ued his academic journey in Canada, completing a
second master’s in Computer Science and a Ph.D.
in Electrical and Computer Engineering (ECE) at
McMaster University in 2015 and 2021. Dr. Ak-
bari is currently an Assistant Professor at Michigan
Technological University in Houghton, Michigan,

USA. He has served as a reviewer for prominent journals including IEEE
Access, IEEE Transactions on Robotics, and IEEE Transactions on Systems,
Man, and Cybernetics. His research focuses on state estimation algorithms,
collaborative multi-agent systems, multi-target tracking, multi-output Gaussian
processes, iterative localization and mapping, factor graph optimization, and
reinforcement learning.

	Introduction
	Problem description
	Problem description
	Mathematical Model

	Algorithm design
	ALNS framework
	Delete heuristic
	Insert heuristics
	The acceptance criteria are based on linear threshold acceptance
	Adaptive weight adjustment

	Simulation experiment and analysis
	Test Case
	Experimental Results And Algorithm Performance Analysis
	Algorithm validation of cases of different scales

	conclusion
	Biographies
	YuanYuan Tan
	Zihao Wei
	Haibin Zhu
	Behzad Akbari

