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Towards Robust Identification of Rail
Short-Wavelength Irregularities: A Multi-Modal
Fusion of Vibration and Profile Data

Yiming Zhai, Huanyu Yang, Jun Wang, and Yuntong An

Abstract—Short-wavelength rail irregularities (SWRIs) are
localized geometric deviations that evolve under periodic wheel
loads and can compromise operational safety. Vibration-only
inspection is prone to noise and response ambiguity, whereas
profile-only inspection lacks temporal dynamics of wheel-rail
interaction. We propose a multi-modal framework that fuses axle-
box vibration sequences with high-resolution rail profile data. On
the vibration side, features are learned via stacked autoencoders
(SAE); on the profile side, measured contours are registered
to a standard template, transformed into wear sequences via
Dynamic Time Warping (DTW), and compressed with Principal
Component Analysis (PCA). Two kernel SVMs (KSVMs) trained
on the respective modalities are aggregated through a class-
dependent confidence fusion. On a 100 m laboratory rail with
simulated grinding (F1), spalling (F2), abrasion (F3), and normal
(F4), we collect 200 paired samples and show that the fusion
model markedly reduces misclassification, achieving accuracies
of 87.5% (F1), 100% (F2), 93.3% (F3), and 94.1% (F4), with
overall gains ranging from 7.1% to 47.7% over single-source
baselines. The approach provides a principled path to robust,
intelligent rail condition monitoring.

Key Words—Railway safety, short-wavelength irregularity, vi-
bration analysis, rail profile, multi-modal fusion

I. INTRODUCTION

NSURING the structural integrity of railway infrastruc-
ture has long been a cornerstone of safe and efficient
transportation systems [1]. Among the various degradation
phenomena that occur on rails, short-wavelength irregularities
represent one of the most challenging threats. These defects,
typically characterized by localized geometric deviations with
periodic patterns, emerge gradually under the repeated action
of wheel loads and can severely deteriorate ride comfort, ac-
celerate rail wear, and, in extreme cases, precipitate derailment
accidents [2]]. As railway networks expand and traffic intensity
continues to rise, the early detection of such irregularities be-
comes an increasingly critical requirement for both operational
safety and cost-effective maintenance [3]].
Traditional approaches to track condition monitoring have
largely relied on vibration-based sensing. By attaching ac-
celerometers to the axle-box, the dynamic response of the
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wheel-rail interaction can be continuously monitored. This
technique offers attractive advantages, such as low cost and
real-time capability [4], but it often suffers from signal con-
tamination by ambient noise and ambiguous mapping between
vibration patterns and defect categories [5]. Different irregular-
ity types or depths may yield overlapping vibration signatures,
thereby reducing diagnostic reliability.

As technology progresses, machine vision has been widely
applied across fields such as military, mining, medicine, and
agriculture [5-8], and is increasingly becoming an impor-
tant tool for rail defect detection. Machine vision works by
converting image information into digital data for analysis
and recognition, using high-resolution imaging devices (e.g.,
cameras or drones) to capture photographs of railway tracks,
followed by image processing and computer-vision algorithms
to identify damage [9]. Although this approach offers high
detection accuracy and good continuity, images are vulnerable
to noise, occlusion, or low contrast, and visual imaging alone
cannot comprehensively assess rail geometry or the depth
distribution of short-wavelength irregularities. Consequently,
the effectiveness of machine vision under complex operating
conditions remains limited. Parallel efforts have introduced
optical and profile measurement technologies [10], which
provide a more direct view of the rail geometry. Laser-based
contour acquisition, for example, generates high-resolution
two-dimensional point clouds of the rail cross-section [11],
allowing wear and deformation to be quantified with high
accuracy [12, [13) [14]. However, profile inspection on its own
fails to capture the dynamic interaction effects that occur when
trains are in motion, and its ability to characterize defect
evolution across multiple temporal scales is limited.

In light of these challenges, data fusion emerges as a
promising avenue. By combining the complementary strengths
of vibration and geometric profile measurements, a more
holistic description of rail conditions can be achieved. This
paper proposes a multi-modal fusion framework that leverages
deep representation learning and statistical modeling to jointly
interpret both data modalities, ultimately aiming to enhance
the robustness and precision of short-wavelength irregularity
detection.

Contributions. We present a decision-level multi-modal
framework that (i) learns compact vibration representations
via SAE; (ii) converts registered contours into temporal wear
sequences with DTW and reduces them by PCA; (iii) trains
per-modality KSVMs; and (iv) fuses probabilistic outputs with
class-dependent reliability weights. On a controlled 100 m
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testbed with four classes (F1-F4), we verify consistent gains of
7.1%—-47.7% over single-modality baselines, and analyze why
fusion reduces confusions between grinding (F1) and abrasion
(F3).

II. RELATED WORK
A. Vibration-based rail monitoring

Vibration analysis has been one of the earliest and most
widely used methods for track condition monitoring. Ac-
celerometers mounted on bogies or axle-boxes record the
vertical and lateral dynamic responses induced by wheel-rail
contact [12f]. Several studies have demonstrated the feasibility
of identifying corrugation, spalling, and similar defects from
spectral features of vibration signals. Nevertheless, ambiguities
arise because different defect categories can yield comparable
vibration signatures under varying operational conditions, such
as speed or axle load. Moreover, background vibrations from
the vehicle body and surrounding environment often obscure
subtle irregularity patterns, leading to false positives and
inconsistent recognition accuracy. [2| 4]

B. Optical vision and rail profile metrology

With advances in computer vision, image-based approaches
have been introduced for rail defect detection. High-speed
cameras and unmanned aerial vehicles (UAVs) enable contin-
uous visual inspection, followed by digital image processing
to highlight cracks, scratches, or material loss. These methods
have proven effective in capturing visible surface anomalies
and offer high spatial resolution [12]. However, their effec-
tiveness is heavily dependent on environmental conditions
such as illumination, occlusion, or dirt on the rail surface.
Furthermore, purely visual systems struggle to assess the depth
and periodicity of short-wavelength irregularities, limiting
their applicability to dynamic safety assessment. [[10, [11} [15]]

Profile-based detection addresses part of this limitation by
directly quantifying rail cross-section geometry. Laser profilers
project structured light onto the rail and reconstruct contour
data as two-dimensional point clouds [13]. When compared
against a reference rail template, deviations in head and waist
regions can be identified as indicators of wear and deformation
[14]. While profile measurement has been widely adopted
in heavy-haul railways for wear monitoring, it alone does
not capture the temporal dynamics associated with vibration
responses, making it insufficient for a complete diagnosis of
short-wavelength defects.

C. Multi-source fusion in infrastructure

To overcome the drawbacks of single-modality approaches,
multi-source data fusion has gained momentum in infras-
tructure health monitoring. Applications in bridge inspection,
rotating machinery diagnostics, and pavement evaluation have
demonstrated the benefits of integrating complementary data
types to improve reliability and resilience of detection systems.
In the railway domain, however, fusion studies remain rela-
tively sparse. Existing research has mainly focused on com-
bining multiple vibration channels or integrating visual data

with limited sensor inputs. Comprehensive frameworks that
combine both vibration dynamics and rail profile information
are still lacking, particularly for short-wavelength irregularity
detection. [6, (7, 18, 9]

III. PROBLEM FORMULATION AND NOTATION

Motivated by these gaps, we now cast short-wavelength ir-
regularity detection as a supervised classification problem. We
first specify the paired sensing dataset, the modality-specific
embeddings, and the probabilistic decision rule adopted in this
work. Let D = {(x("),p("),y("))}nNz1 be paired Axle Box
Acceleration (ABA) sequences x™ € R profile samples
p" e RM*2 (2D points), and labels y) € {1,2,3,4} (Fl:
grinding, F2: spalling, F3: abrasion, F4: normal). In practice,
T, is the time length (i.e., the vector length) of the vibration
signal for sample n, which may vary across samples due to
factors such as running speed and window length, while M
denotes the number of valid contour points after masking and
ordering. We assume that (x"), p("™)) are synchronized at the
segment level, i.e., they correspond to the same track location
within a small spatial tolerance, which enables effective cross-
modality reasoning.

Our goal is a classifier f : R% x R% — {1..4} with d,, =20
(vibration embedding) and d, = 11 (geometric embedding).
Concretely, we consider modality-specific mappings

¢y :RT" SR, g, RMZ R,

which yield v(") = ¢, (x")) and g = ¢g(p(”)). The clas-
sifier then acts on (v, g(™) to produce a discrete decision
$) = f(v(™ g) We further write the classifier in prob-
abilistic form via calibrated posteriors mx(v,g) = P(y = k |
v, g), with the Bayes decision § = arg max 7 (v, g). To avoid
ambiguity, we denote class priors by px = P(y = k), k €
{1,...,4}.. This formulation allows us to incorporate class-
dependent costs or abstention rules if needed.

A Short Wavelength Rail Irregularity (SWRI) is a localized
periodic deviation with spatial wavelength A € [Anmin, Amax]. If
z(s) is the longitudinal rail surface profile along arc-length s,
the SWRI set can be modeled as

S = {z 3 e A, Tso, llz(s)-zZ($)|lw =T, s € [so,s0+/l]},

(1
with 7 a nominal surface and || - ||y a Sobolev seminorm
encoding smoothness. Intuitively, the condition ||z — Z||¢ > T
captures both amplitude and roughness of the deviation (quan-
tification of the high-frequency energy or curvature degree
of the deviation within a local region), filtering out benign,
slowly varying wear while emphasizing short-wavelength,
high-curvature defects.

For completeness, we make two mild measurement assump-
tions. First, the observed vibration and profile arise from
latent, noise-free signals corrupted by zero-mean disturbances:
xm = x4+ g™ and p™ = p™ + sfg"), where &'
models sensor noise and operational perturbations (e.g., un-
sprung mass dynamics), and sé") reflects scanning noise and
alignment errors, Xi")
ABA sequence and p the latent noise-free rail
profile (2-D contour points in the local rail frame, before

€ RT» denotes the latent noise-free
(n) c RM,,XZ
*
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alignment). The disturbances satisfy E[s{"] = 0, E[ai,")] =0
and are assumed independent across modalities and samples.
Second, the spatial-temporal link between dynamic response
and wavelength is approximately f;, = v/A for train speed v
and dominant vibration peak f},, which rationalizes why speed
normalization or window selection improves class separability.

Since profile points are collected in a local rail coordi-
nate frame, we denote by A an alignment operator (rigid
transform) that maps p™ to the reference template before
feature extraction; formally, p) = A(p"™). The geometric
mapping ¢, then acts on p" (or on a derived wear sequence)
to produce a compact descriptor. Likewise, ¢, may include
normalization and segment selection to mitigate speed-induced
spectral shifts.

Finally, to streamline notation in subsequent sections, we
aggregate features as z) = [v(");g"] e R%*92 and write
class priors as mx = P(y = k), k € {1..4}. When discussing
theoretical properties (e.g., calibration or risk bounds), we
will refer to the conditional densities p(v,g | y = k) and
the induced decision rule $(v, g), but the learning procedures
themselves are entirely data-driven and do not assume para-
metric forms for these densities.

IV. METHODOLOGY

Fig. [I] summarizes the pipeline: ~ABA—SAE,
profile—registration—DTW wear sequence—PCA, per-
modality KSVMs, and class-dependent fusion. In other
words, vibration signals are first preprocessed and embedded
through a stacked autoencoder, while profile measurements
are aligned, converted into wear sequences, and compressed
via principal component analysis. Each modality is then
classified independently using kernel SVMs, and their
probabilistic outputs are integrated at the decision level.
This layered architecture ensures that the strengths of both
dynamic and geometric cues are preserved and that their
weaknesses are mutually compensated.

A. Vibration preprocessing and segment selection

Raw sequences differ in length 7;, because of variable speed,
operating conditions, and sensor durations. To ensure compa-
rability across samples, we first apply z-score normalization:

(n)
x _
xlgn) _ Tt

2

This operation standardizes signals by removing mean off-

sets and scaling variances, thereby emphasizing informative

fluctuations. Since not all parts of the sequence carry useful

diagnostic information, we then select an informative window
‘W, that maximizes empirical variance:

W, = arg Var({£"

1t eW}). 3)

max
Wc{l..T,,},|W|=L
Intuitively, windows with higher variance are more likely
to capture defect-induced oscillations rather than background
noise or steady-state vibration.

T,
Hn _12" (n) z_lz ) \2
o > Mn = T, Z. Xe O = T, ; (xt Hn)”~.

B. Stacked autoencoder (SAE) for vibration representation

We denote by z the variance-maximized segment extracted
from x"). Let zop € RL be the selected segment. To obtain
compact and noise-robust features, we construct a two-layer
SAE:

z1 = ¢y (Wihy +by),
2 = ¢y (Wohy + by),

h; = ¢(Wiz9 + by),
hy = ¢(Wrh; +by),

“4)
&)

where ¢ is a nonlinear activation (ReLU or tanh) and ¢ is
linear. Hidden layer sizes are set to 100 and 20 to progressively
compress the representation. The training objective balances
reconstruction error and sparsity:

1
Loae = 7 llzo - ol + Ayl + Alhe ;. (6)

Greedy layer-wise pretraining for 2000 epochs per layer with
GPU acceleration yields a stable embedding v = h, € R?.
This step effectively distills raw vibrations into a concise set
of latent features that emphasize characteristic defect patterns
while suppressing noise. An illustrative visualization of the
learned sparse patterns is shown in Fig. [2]

C. Profile registration and curvature-driven feature points

Profile contours also require preprocessing, as they are sub-
ject to shifts and rotations. Given measured points {(x;, y;)} l";’ {
and a standard template P,, we solve a rigid registration
problem:

min

(R*,t") = arg
ReSO(2),teR?

M
D UIRp: + t=Tip, (p)I3, (7
i=1

where p; = [x;,y;]7 and Ilp, is the projection operator. To
improve robustness, we exploit curvature information. The
curvature x of a smooth parametric curve y(s) = (x(s), y(s))

i W9y () =y (557 (5)]
(x/(5)2 + y'(5)2) 2

which can be approximated by local polynomial fitting. High-
curvature points serve as natural landmarks, anchoring regis-
tration even in the presence of wear. A validity mask (y >
140, x < 28) filters irrelevant regions, and interval sampling
ensures computational efficiency by reducing redundant points.

«(s) (®)

D. DTW wear-sequence construction

Once contours are aligned, we quantify localized deviations
relative to the template. Let q;.4 denote the experimental con-
tour and ry.p the reference contour. Dynamic Time Warping
(DTW) constructs an accumulated cost matrix:

0(i, j) = llg; — rjll2, )
DL, 1) =6(1,1), D@, 1)=6G1)+DG-1,1), i>2,

(10)

D, j)=6(1, /) +D(1,j-1), j>2, a1

D(i,j)=6(,j)+min{D(i-1,j), D(i,j-1), D(i— 1,7 - 1)}.

12)
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Fig. 3. Profile registration and matching results (kept as in
the original).

with D(1,1) = §(1, 1). By following the path $, we obtain a
sequence of pointwise deviations, which we call the wear se-
quence w € R This representation preserves both geometric
fidelity and relative alignment, making it particularly suitable
for subsequent statistical reduction. Representative registration
and matching results on our dataset are shown in Fig. 3]

E. PCA reduction for geometric descriptors

The wear sequences are still high-dimensional, so we em-
ploy PCA for compression. Let W € RNV>*Iw be the centered
data matrix. Its covariance is

= wiw. (13)

We then solve the eigenproblem
Sup =Agug, A==, (14)
and retain the top-K eigenvectors Ux = [uj,...,ug]. Each

wear sequence is thus represented as g = WUk € RX with
K=11 chosen to explain at least 95% of variance.

This step condenses thousands of contour deviations into
a compact descriptor that captures the main modes of wear
while discarding noise.

F. Per-modality KSVMs and probabilistic outputs
For each modality, we train an RBF-kernel SVM:

ChI2
K(a,b) = exp( - ”32:2”2), o> 0.

15)
This nonlinear kernel effectively handles the complex decision
boundaries required for defect classification. To support deci-
sion fusion, we calibrate the raw SVM scores into probabilities

using Platt scaling:

= Ulog(am,kfm,k(x)"'ﬂm,k)’ (16)

Here m indexes the modality (vibration or geometry), and k
indexes the defect class. These probabilities represent the clas-
sifier’s confidence and form the basis of the fusion mechanism.

Pm.k(X) Tlog(2) = 1+e z-
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G. Class-dependent decision fusion

To exploit complementary strengths, we adopt class-
dependent fusion. Let w,, x > O denote the reliability of
modality m for class k, estimated from validation. The fused

decision is

me{vib,geo}

W,k pm,k(x)~ 17)

y = argmax

In practice, we use wgeo = [0.2,0.6,0.7,0.9] and w.ip =

[0.6,0.4,0.3,0.1], reflecting that geometric descriptors are

highly reliable for normal states, whereas vibration cues better
capture dynamic signatures such as spalling.

Algorithm 1 Training & Fusion Inference

Input: Paired data {(x""), p(, y(")}, PCA target K, KSVM
grids C,Z

Output: Fused classifier j(-)

1: Normalize x(), select ‘W, build segments z( n)

Train SAE (100—20) by minimizing Lsag; get v

Register p™ to template; compute wear sequences w'")

Fit PCA on {w(™}; get g e R!!

Train KSVMy;, on v, KSVMge, on g(”)

Calibrate pyip,x and pgeo,x With Platt scaling

Tune w,, x on validation (grid search)

Inference: compute y = arg max 2., W,k P,k (X)

o S I A S

V. THEORETICAL AND PRACTICAL ANALYSIS
A. Why fusion helps: a bias—variance view

The benefit of combining vibration and profile modalities
can be formally understood from a classical bias—variance
decomposition. Let h,, be the per-modality classifier and
y € {1..4}. For one-vs-rest decoding, the expected error can
be decomposed as

E[£(9. )]

systematic instability

(18)
where the first term captures systematic misestimation of de-
cision boundaries, the second term reflects random variability
due to finite samples, and the last term incorporates cross-
modal correlation. Importantly, the negative covariance term
(i.e., complementarity) reduces the fused error whenever two
classifiers make errors in different regions of the feature space.
In practice, axle-box acceleration (ABA) and profile data ex-
hibit distinct sensitivities: vibration is more dynamic but noisy,
whereas profile is geometrically precise but less responsive to
transient irregularities. Since their error patterns are weakly
correlated, weighted fusion is able to simultaneously lower
variance and reduce joint confusion, thereby explaining the
empirical gains observed in experiments.

B. DTW stability to local misalignment

Another theoretical concern is whether the wear-sequence
construction via DTW is sensitive to local misalignment of
contours. Let ¢ be a small reparameterization of arclength,
which may arise from sampling irregularities, sensor latency,

~ ) @ Bias(h)? +By Var(hy) =y Cov(hyin, hgeo),
m N——— —

159

or measurement jitter. For Lipschitz-continuous contours ¢, r,
one can bound the perturbation in DTW distance as

Lip(q)-ll¢—id|lw-[P], (19)

where ||¢ —id|| measures the maximum deviation of ¢ from
the identity mapping (i.e., the largest temporal misalignment),
Lip(q) is the Lipschitz constant of the contour q, and |P|
denotes the length of the optimal DTW alignment path (upper
bounded by A + B — 1 for sequences of length A and B).

This corrected inequality highlights that the variation in
DTW cost grows linearly with both the severity of repa-
rameterization and the complexity of the alignment path. In
practical terms, it implies that the geometric representation
extracted from DTW remains stable under small sampling
perturbations. Even if a laser profiler introduces minor shifts
or nonuniform spacing, the effect on the final wear-sequence
features is bounded and controlled, thereby ensuring the ro-
bustness of the profile-based descriptors.

IDTW(qo¢,r)-DTW(q,1)| <

C. Complexity

Finally, we analyze computational complexity to evaluate
real-time feasibility. Let L be the selected vibration segment
length and M the number of profile points per sample. SAE
training requires

0(2000 - L - 100 + 2000 - 100 - 20),

reflecting two layers with 2000 iterations each. DTW align-
ment operates with complexity O(AB) where A,B ~ M,
essentially quadratic in contour length. PCA reduction involves
computing the covariance and eigen-decomposition, with cost
O(M?N+M?). Finally, KSVM training scales between O(N?)
and O(N?) depending on implementation and kernel approxi-
mation. Although some modules are computationally demand-
ing during offline training, all stages are linear or quadratic in
practical ranges of N, M, and L. Once trained, the system
runs with low per-sample inference cost, making onboard
deployment feasible for periodic monitoring and near real-time
decision-making.

VI. EXPERIMENTAL SETUP
A. Testbed and sensors

To evaluate the proposed approach under controlled yet
realistic conditions, we constructed a 100 m experimental rail
track in laboratory settings. The rail is designed to include
four representative categories of surface states: prefabricated
grinding (F1), spalling (F2), abrasion (F3), and intact normal
rail (F4). Each defect type was artificially introduced with
controlled dimensions and verified by expert inspection to
ensure consistency with typical field conditions.

A mobile inspection platform was developed to traverse the
rail at a constant, moderate speed. The platform integrates two
complementary sensing modules: (i) an axle-box accelerom-
eter (ABA) unit rigidly mounted to capture vertical vibration
responses induced by wheel-rail interaction, and (ii) a high-
precision laser profile scanner capable of reconstructing the
two-dimensional cross-sectional contour of the rail head [12]
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Fig. 4. Representative signals (F1-F4): top row: ABA
time-domain waveforms; bottom row: registered rail profiles.

13]]. The two sensing channels are hardware-synchronized such
that vibration signals and profile measurements are aligned in
both space and time [[14]. This guarantees that each collected
sample corresponds to the same physical segment of the
rail, thereby eliminating ambiguities caused by asynchronous
acquisition. The laboratory environment also allows control of
environmental noise and operating conditions, which facilitates
reproducibility of results.

B. Dataset

Based on the above setup, we collected a total of 200 paired
samples evenly distributed across the four classes (F1-F4).
Each paired sample consists of a time-domain ABA sequence
and a corresponding rail profile contour, both aligned to the
same spatial location. The collection process strictly enforced
spatiotemporal alignment, ensuring that vibration dynamics
and geometric deviations are truly paired.

Prior to modeling, all raw signals were pre-processed
through several steps: outlier removal to discard corrupted
readings, normalization to remove amplitude bias between
runs, and ordering to maintain consistent temporal and spatial
indices across the dataset. Fig. [] illustrates representative ex-
amples from the dataset: the upper row shows typical vibration
waveforms for the four classes, while the lower row depicts the
corresponding registered rail profiles. Together, these paired
examples highlight both the dynamic and geometric manifes-
tations of the considered short-wavelength irregularities.

C. Implementation details

For the vibration pathway, the stacked autoencoder (SAE)
was configured with hidden sizes of (100,20) neurons, and
each layer was pretrained for 2000 iterations to ensure con-
vergence. The learned embeddings provide a compact yet
expressive representation of ABA sequences.

For the profile pathway, registered contours were aligned
to a standard reference, and wear sequences were constructed
using Dynamic Time Warping (DTW) with Euclidean distance
as the local cost function. Principal Component Analysis
(PCA) was then applied, retaining components that explain
at least 95% of the variance, which corresponded to an 11-
dimensional geometric descriptor.

Kernel SVMs (KSVMs) with radial basis function (RBF)
kernels were trained independently for the vibration and profile

modalities. Hyperparameters (C,o) were selected through
grid search on a validation set. Finally, a decision-level fusion
strategy was employed, where class-dependent weights were
tuned to reflect the relative reliability of each modality. The
optimal values were found to be

Wgeo = [0.2,0.6,0.7,0.9],  wyp = [0.6,0.4,0.3,0.1],

indicating that geometric descriptors contribute more to classes
with distinctive shape variations (e.g., F4), while vibration
embeddings provide higher discriminative power for dynamic
defects such as spalling or abrasion.

VII. RESULTS AND ANALYSIS

A. Ablation: vibration-only

With 20D SAE features, KSVM shows limited generaliza-
tion for F1 and F4 due to overlap with F3. Test accuracy: F1
52.4% (47.6% misclassified as F3), F2 100%, F3 80%, F4
46.4%; metrics in Fig. 5

These results suggest that vibration features alone, although
sensitive to dynamic excitations, do not provide sufficient dis-
criminative power when defects produce partially overlapping
frequency or amplitude signatures. In particular, grinding (F1)
and abrasion (F3) both introduce high-frequency vibration
components that are difficult to separate without additional
contextual information. Similarly, the normal rail (F4) some-
times exhibits vibration patterns close to those of abrasion
due to environmental noise or minor irregularities that do
not qualify as defects but still perturb the ABA signal. This
explains the poor recognition rate for F4.

Overall, the vibration-only model excels at spalling (F2),
which has a unique and abrupt dynamic signature, but strug-
gles with subtler conditions. This highlights the intrinsic
limitation of relying solely on ABA sensing.

B. Ablation: profile-only

After registration—>DTW—PCA (11D), KSVM accurately
recognizes F4 (100%) and F2 (92.9%), but confuses F1 with
F2 (F1 68.8%) and F3 with F4 (F3 77.8%); see Fig. [0

Compared with vibration-only, the profile-only pathway
demonstrates stronger capability in capturing geometric dif-
ferences, particularly for normal segments (F4), which are
sharply separated from defective cases. This confirms that
contour information is a highly reliable indicator of whether
a rail is defect-free. However, the profile-only model has its
own limitations: the confusion between grinding (F1) and
spalling (F2) suggests that their wear patterns may share
similar cross-sectional characteristics, making it difficult to
differentiate based solely on geometry. Likewise, the overlap
between abrasion (F3) and normal rails (F4) indicates that
slight wear can resemble healthy profiles when inspected only
at a geometric level.

Thus, while geometric features capture shape deviations
effectively, they are insufficient for capturing the temporal
dynamics that distinguish different degradation processes.
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Fig. 5. Vibration-only: (top) confusion matrix; (bottom)
precision/recall/F1 across F1-F4.

C. Fusion: class-dependent confidence

Fusion substantially reduces F1<F3 confusions and im-
proves balance: F1 87.5%, F2 100%, F3 93.3%, F4 94.1%
(Fig. [7). Table [[] compares modalities.

The fusion strategy demonstrates the advantage of combin-
ing complementary modalities. By weighting vibration more
heavily for dynamic defects such as spalling and abrasion, and
relying on profile information for distinguishing normal and
grinding states, the fused system achieves balanced recognition
across all four classes. Importantly, the severe confusions ob-
served in single-modality settings are largely eliminated. The
confusion matrix shows that the fusion approach significantly
improves the recognition of F1 and F3, which were previously
the most difficult to separate.

These improvements validate the hypothesis that ABA and
profile data provide orthogonal information. Their errors are
weakly correlated, so the fusion model benefits from error
compensation, leading to more robust predictions in diverse
conditions.

Confusion matrix
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Fig. 6. Profile-only: (top) confusion matrix; (bottom)
precision/recall/F1 across F1-F4.

TABLE I Test Accuracy (%) by Modality

Class Vibration  Profile  Fusion
F4 (Normal) 46.4 100.0 94.1
F1 (Grinding) 52.4 68.8 87.5
F2 (Spalling) 100.0 92.9 100.0
F3 (Abrasion) 80.0 77.8 93.3

D. Sensitivity and robustness

SAE dimension. Increasing the second-layer size beyond
20 marginally improves training but saturates validation, in-
dicating 20D is near-optimal. This suggests that the learned
vibration embeddings already capture the essential dynamic
features, and further expansion risks overfitting without clear
benefit.

PCA components. Retaining 11 PCs (95%) balances ac-
curacy and complexity; fewer PCs degrade F1/F3 separation.
This indicates that geometric variations relevant for distin-
guishing grinding from abrasion require a relatively rich sub-
space representation, while further components mostly encode
noise.
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Fig. 7. Fusion: (top) confusion matrix; (bottom)
precision/recall/F1 across F1-F4.

Fusion weights. Small perturbations around the selected
w leave accuracy stable, confirming robustness of class-
dependent weighting. This stability is critical for real deploy-
ment, since it indicates that the fusion model does not rely on
overly precise tuning and can tolerate moderate fluctuations in
data distribution without significant degradation.

E. Engineering implications

Fusion cuts both false alarms (F4—F3) and misses
(F1—F3), enabling more reliable maintenance scheduling and
curbing unnecessary grinding. From an engineering stand-
point, this lets rail operators avoid costly, unwarranted inter-
ventions without compromising safety. A lower false-alarm
rate translates directly into savings in inspection time and
maintenance budget, while improved detection of subtle de-
fects ensures early action before minor irregularities escalate
into severe failures.

Furthermore, the system’s robustness enables seamless inte-
gration into onboard monitoring platforms with minimal cali-
bration effort, delivering real-time defect identification during

normal train operations. This paves the way for intelligent,
condition-based maintenance regimes, in place of traditional
schedule-based approaches that can either under-maintain or
over-maintain infrastructure.

VIII. DISCUSSION

Why F1 and F3 are confusable. Grinding and abrasion
produce overlapping excitations at specific speed—wavelength
combinations, explaining ABA ambiguity; their cross-sectional
wear can also align at shallow depths, explaining profile am-
biguity. Fusion integrates dynamics with geometry. In detail,
grinding often leaves shallow, periodic marks that generate
vibration components resembling those from gradual rail-head
abrasion. At certain train speeds, their ABA spectra overlap
strongly, making vibration-only classifiers hard to separate.
Geometrically, both appear as surface material loss, and their
signatures are not easily distinguishable when wear is small.
This dual ambiguity explains why single-modality methods
fail. By fusing vibration and profile cues—ABA emphasizing
transient dynamic excitation and profiles capturing static shape
differences—the model breaks the ambiguity.

Deployment. Offline training is modest; online inference is
real time. Onboard integration is feasible: continuous ABA
streaming with periodic profile scans yields robust alarms
at low bandwidth. From an engineering standpoint, ABA
can be streamed continuously at low sampling cost, en-
abling real-time monitoring with minimal compute. Laser
profile measurements, though costlier, can run at lower ca-
dence—scheduled at maintenance intervals or triggered by
suspicious vibration patterns—balancing cost and accuracy.
Crucially, the decision-level fusion requires only lightweight
computations at inference, making integration into existing
onboard monitoring systems straightforward. Compared with
traditional visual inspection or manual ultrasonic testing, this
approach substantially reduces human effort and provides
continuous, automated coverage, positioning the method as a
key component of future intelligent railway maintenance.

Limitations. The lab dataset is controlled; future work
should address varied rail types, speeds, environmental condi-
tions, and long-term drift. While a controlled setting ensures
consistency, it does not capture field complexity: diverse rail
steels, heterogeneous ballast stiffness, weather-driven variabil-
ity, and rolling-stock noise can affect both vibration and profile
signals. Long-term monitoring will also encounter sensor
drift, gradual track-geometry changes, and evolving defect
characteristics. Addressing these issues will require domain
adaptation, transfer learning, and periodic model recalibration.
Dataset size is another limitation: although 200 paired samples
support a proof of concept, larger, multi-line datasets are
needed for statistical generalization. Future studies should
also explore deep sequential models or graph-based learning
to capture higher-order spatiotemporal correlations in rail
degradation. Ultimately, scaling from laboratory demonstration
to industrial deployment demands robust validation across
diverse rail networks at operational speeds.

IX. CONCLUSION
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This study proposes a multi-modal fusion framework that
combines axle-box acceleration (ABA) dynamics with rail
geometry to robustly identify short-wavelength irregularities
(SWRI). On a 100 m experimental rail with 200 paired
samples, the framework employs an SAE+DTW+PCA feature-
extraction pipeline together with a class-weighted KSVM
for decision fusion, yielding substantial gains. On the test
set, it improves accuracy over single-modality baselines by
7.1%—47.7%; the per-class accuracies reach 100% for spalling
and 94.1% for normal, while corrugation and abrasion rise to
87.5% and 93.3%, respectively. More importantly, the fusion
approach addresses confusions typical of single modalities,
significantly reducing misclassification between corrugation
and abrasion and narrowing the ambiguous boundary between
abrasion and normal.

These improvements stem from the complementary
strengths of the two modalities. Vibration sensing is flexible
and real-time but susceptible to noise; geometric inspection is
precise yet insensitive to transient excitations. By fusing them,
the system retains the sensitivity of dynamic responses and
the accuracy of geometric measurements, resulting in a more
balanced and reliable recognizer. Practically, by lowering false
alarms and enabling earlier detection of hazardous defects,
the framework can reduce maintenance costs and enhance
operational safety. Its lightweight fusion computation makes
onboard real-time deployment feasible, laying the groundwork
for integration into intelligent inspection vehicles and even
next-generation train control systems, and supporting a shift
from schedule-based to condition-based maintenance.

That said, scaling to operational networks remains chal-
lenging. Larger datasets spanning multiple rail types and
operating conditions are needed to verify generalization. Ad-
vanced learning methods—such as graph neural networks and
self-supervised representation learning—may further improve
robustness to unseen defect patterns. Incorporating long-term
monitoring data will also allow the system to capture tempo-
ral evolution, moving from purely diagnostic outputs toward
predictive maintenance.

Overall, this work advances the application of multi-modal
learning in infrastructure monitoring and offers a practical
solution for railway safety assurance. The successful valida-
tion of the fusion framework demonstrates that combining
heterogeneous sensing modalities is an effective route to better
defect detection, and the approach is readily extensible to other
structural health monitoring domains—such as bridges, pave-
ments, and rotating machinery—supporting the development
of smarter and safer transportation infrastructure.

APPENDIX A: ADDITIONAL DERIVATIONS
A.1 SVM primal-dual

One-vs-rest SVM solves

o1
min S {Iwli +CZ& sLyi(W (%) +b) 2 1=, £ 20,

(20)

Dual variables @ yield the RBF decision f(x) =

Zi CkiyiK(Xi, X) + b.

A.2 Curvature via least-squares circle fit
For points {(x;,y;)} near a head/waist arc, the circle (x —
a)? + (y — b)? = r? is fit by minimizing

: 2 2 2)\2
min 3 (= a)* + (i = b)* = ),

L

2D
whose solution seeds curvature estimates « = 1/r.

A.3 Generalization sketch

Under Tsybakov margin with exponent «, calibrated prob-
abilistic fusion with bounded weights admits

R(5) - R() <O ).

), 22)
suggesting that complementary modalities reduce finite-
sample error.
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