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Circular Disassembly Line Balancing Based on
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Abstract—Driven by the growing demand for recycling,
disassembly has emerged as a critical process, prompting the
phased upgrade of traditional manual disassembly lines. To
address the multi-period personnel scheduling problem within
a cyclic disassembly-assembly line environment, this study
innovatively introduces the Importance-Weighted Actor-Learner
Architecture (IMPALA) reinforcement learning algorithm. The
proposed method quantifies and incorporates worker learning
effects to enable more rational dynamic task allocation, thereby
maximizing production line profit and efficiency. Experimental
results demonstrate that our approach exhibits a competitive
advantage in both solution quality and efficiency when compared
to exact solvers and other intelligent optimization algorithms
(e.g., A2C, SAC, DQN, DDPG).

Key Words—Disassembly line balancing problem, circular
layout, learning effect, multi-skilled workers, IMPALA algorithm,
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I. INTRODUCTION

W ITH the growing emphasis on resource conservation
and environmental protection, producers are required

to disassemble, reuse, and recycle waste products to support
sustainable resource use and protect the environment[1, 2].
Product disassembly systematically separates parts, assem-
blies, and components from products. Only after the product
is disassembled can the material be recycled and its usable
parts be remade. The product disassembly line, referred to
as the disassembly line, can realize automatic disassembly
and assembly line operation. It is characterized by high
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operational efficiency and is suitable for both large products
and high volumes of small products. Numerous factors affect
the performance of the disassembly line, such as the type
of disassembled product, the layout and speed of the dis-
assembly line, the disassembly operation time, and the task
allocation across workstations. The circular disassembly line
considered in this paper offers high flexibility, making it easier
to adapt to the disassembly needs from different products. By
adjusting the position and configuration, it can quickly adapt
to changes among the disassembly product tasks. To address
these challenges, this study proposes a Circular Disassembly
Line Balancing Problem considering Human Learning Effects
and Worker Assignment (C-DLBP-HLWA), integrating multi-
period personnel scheduling with worker learning effects to
enhance disassembly efficiency.

In manufacturing enterprises, multi-period staff scheduling
divides working hours into distinct time slots and assigns
employees to shifts based on production demands and work-
force availability, ensuring a better match between labor
supply and operational needs. Existing studies have explored
various task and personnel scheduling methods. Cao [3] et
al. applied model predictive control to optimize scheduling in
photovoltaic energy storage systems. Behnamian [4] proposed
a colonial competition algorithm with variable neighborhood
search, considering learning and deterioration in hybrid flow
shop scheduling and worker assignment. Krishnamoorthy [5]
et al. introduced the personnel task scheduling problem with
its properties and benchmarks. Abualigah [6] et al. developed
a hybrid multiverse optimization–genetic algorithm (MVO-
GA) to improve scheduling efficiency, while Zhou Conghao
[7] et al. addressed computing task scheduling in integrated
air-ground networks under energy constraints. However, few
studies have focused on disassembly lines, particularly the role
of human learning. In practice, workers improve performance
through repeated task execution, though efficiency gains tend
to plateau as experience accumulates. Studies by Adler [8],
Stansbury [9], and Mosheiov [10] have examined learning
curves and their impact on scheduling and productivity. Learn-
ing not only shortens task times—particularly for skilled
operations—but also reduces risks and operational losses.

In recent years, reinforcement learning algorithms have re-
ceived extensive attention in various fields [11][12], and many
studies have employed them to solve disassembly problems.
Wang et al. [13] used efficient deep reinforcement learning
technology to achieve dynamic balance optimization of U-
shaped robot disassembly lines. Another study [14] introduced
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reinforcement learning methods to the problem of hybrid
disassembly line balance, providing new ideas to optimize
the disassembly process. C-DLBP-HLWA mainly involves the
reasonable allocation of product disassembly tasks to workers
with different skills, while considering constraints such as
priority and conflict to ensure efficient execution of tasks on
circular disassembly lines. In addition, Circular Disassembly
Line Balancing Problem typically arises in a complex, dy-
namic [15], and large-scale environment, making the scalabil-
ity and performance of the algorithm crucial. Reinforcement
learning methods acquire optimal strategies autonomously
through interaction with the environment. They are particu-
larly well suited for dynamic and iterative decision-making
scenarios, effectively handling high-dimensional state and ac-
tion spaces while modeling complex nonlinear relationships
between variables. The Importance-Weighted Actor–Learner
Architecture (IMPALA) employs a distributed actor–learner
framework that enables stable policy updates while maintain-
ing high throughput. It introduces a V-trace policy correction
mechanism to reduce policy deviation and improve gradient
estimation accuracy, thereby enhancing training stability. Com-
pared with other reinforcement learning approaches, IMPALA
shows a stronger convergence. In particular, when addressing
the circular disassembly line problem with human learning
effects, it can more effectively maximize profits. Moreover,
the algorithm can dynamically adjust product task allocation
and worker scheduling, and sustain strong performance even
as system scale expands.

This paper improves the circular disassembly line balance
problem considering the human learning effect. First, more
factors are considered affecting the circular layout disassembly
line problem, and a mathematical model is developed to
maximize the profit from disassembly. Second, the IMPALA
algorithm is used and compared with four reinforcement
learning algorithms, namely the dominant actor-critic algo-
rithm (A2C[16]), the soft actor-critic algorithm (SAC[17]),
the deep Q network (DQN[18]) and the deep deterministic
policy gradient algorithm (DDPG[19]). Finally, the IMPALA
algorithm outperforms other methods in terms of algorithm
convergence, solution quality, and execution time.

This work aims to make the following three contributions:
1) This work incorporates the impact of workers’ different

learning abilities on multi-period personnel scheduling
in DLBP. It further proposes a circular disassembly line
layout model based on skill categories to assign workers
and tasks to optimize the assignment of workers and
tasks.

2) This work applies a new reinforcement learning algo-
rithm, IMPALA, to the circular disassembly line balanc-
ing problem in shifts with human learning effects. The
algorithm employs a V-trace policy correction strategy to
effectively reduce strategy lag, improve gradient estima-
tion accuracy, and significantly enhance data utilization
and training stability in complex, large-scale scheduling
environments.

3) Experimental results demonstrate that IMPALA out-
performs other state of the art reinforcement learning
algorithms(A2C, SAC, DQN, and DDPG) in solving the

DLBP-HLWA problem, validating its effectiveness and
practical value.

The rest of this paper is organized as follows: Section II
explains the problem studied and its mathematical model.
Section III introduces the IMPALA algorithm design. Section
IV discusses the experimental comparison results. Section V
is the conclusion of this paper.

II. PROBLEM DESCRIPTION

A. Problem Statement

The DLBP solution includes the disassembly plan of the
products to be disassembled and the allocation of disassembly
tasks to workstations and workers who perform the tasks
to obtain the maximum disassembly benefit[20–22]. Based
on basic DLBP, this paper mainly considers the circular
layout with worker learning ability. The expansion aspects
mainly include the division of shifts according to the workers’
experience values and the flexible allocation of disassembly
tasks to workstations. At the same time, considering the effect
of learning on workers, each task is assigned to the most
suitable worker as much as possible. By achieving adaptation
between tasks and workers, we aim to maximize the benefit
of disassembly.

B. AND/OR Graph

AND/OR graphs represent all feasible disassembly se-
quences of EOL products, specifying precedence and con-
flict relations between operations [23],[24]. This paper uses
AND/OR graphs to describe the disassembly relations between
components, conflicts, and priority constraints between tasks.
In an AND/OR graph, each node represents a subcomponent,
indexed by an integer i in angle brackets, i.e., <i>, i=1,
2, . . . I , where I represents the number of subcomponents.
Straight arcs then connect the nodes. Disassembly operations
are represented by multiple directed edges from the same start-
ing node to its child nodes, forming an ”AND” relationship.
All operations are graphically labeled with an integer j, j=1, 2,
. . . , J , where J is the total number of disassembly operations
for a given EOL product. A node can have multiple operations,
forming an ”OR” relationship.

Figure 1 shows a case of a compass consisting of 7 parts,
and its DAOG is shown in Figure 2. The DAOG consists
of boxes and directed arcs. The elements represent the parts
and disassembly tasks of the product. As shown in Figure 2,
there are two ways to disassemble the component. Executing
disassembly task 5 can obtain sub-assemblies <10> and
sub-assembly <5>, and executing disassembly task 6 can
obtain sub-assemblies <4> and sub-assembly <14>. The
component can only be disassembled using one of the two
tasks. Therefore, task 5 and task 6 are two conflicting tasks.
When one of the conflicting tasks is executed, the other tasks
are prohibited. Since the component is disassembled by task 2,
task 2 is the immediate predecessor of task 5 and task 6. Each
task must be executed after its previous task in a disassembly
sequence.
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Fig. 1. Schematic diagram of a kettle.

Fig. 2. The AND/OR graph of the disassembly process of a
kettle.

To calculate the benefits of disassembly components, two
matrices are used to describe the relationship between disas-
sembly components and tasks and the relationship between
disassembly tasks and disassembly skills.

1) Subassembly-task association matrix
A subassembly-task association matrix D = [dpji] is con-

structed to define the relationships between subassemblies and
tasks:

dpji =


1, if subassembly j is obtained by task i of product p;
−1, if subassembly j is disassembled by task i of

product p;
0, otherwise

2) Task-skill association matrix
A task-skill association matrix B = [bpis] is used to describe

the relationship between tasks and skills.

bpis =

 1, if disassembly task i of product p involves skill s
0, if disassembly task i of product p does not

involve skill s;

In this work, we assume that:
1) Matrices D and B are known.
2) The conflicting and priority relationship among disas-

sembly tasks is known.
3) A worker is assigned to one workstation, and each worker

has an initial experience.

4) Each disassembly task requires a disassembly skill. The
higher the level of disassembly skill, the less time it requires
to accomplish the disassembly task.

5) At least one disassembly task is assigned to each active
workstation.

6) There is no conflict and priority among the disassembly
tasks of different products.

C. Differentiate between shifts

Taking into account the benefits of the enterprise and the
personal life and work needs of employees, we reasonably
allocate and schedule employees according to the production
needs of different shifts. This paper plans to divide a day into
three periods, namely 00:00-08:00, 08:00-16:00 and 16:00-
24:00. The rotation rule is set to rotate every four days, with
a cycle of 28 days. After a cycle of experience accumulation,
when the different skill levels of different workers have
changed, they will be regrouped according to their experience
values and rotate shifts again, and so on. We provide flexible
working time options to improve employee satisfaction and
quality of life[25]. By arranging more workers during critical
periods, we ensure enough people to cope with the peak
production period, improving overall production efficiency.
This flexible scheduling method can not only improve pro-
duction efficiency[26], increase the diversity of employee work
content within the allowable range of mobilization, and reduce
the harm caused by long-term fixed work but also optimize
employees’ work experience and effectively reduce the com-
pany’s operating costs. Reasonable scheduling is significant to
improving work efficiency and reducing company operating
costs.

D. Circular layout and learning effect

Traditional disassembly layouts include linear disassembly
[27], U-shaped disassembly [28], parallel disassembly [29],
and bilateral disassembly. However, traditional disassembly
layouts are subject to time and space constraints at each work-
station, which affects task allocation. This paper considers
the impact of workers’ learning ability on task allocation and
adopts a circular layout disassembly system. This disassem-
bly layout is more flexible and can transfer undisassembled
components to suitable workers in a cycle on the disassembly
line, effectively solving the time and space constraints on the
workstation, thereby achieving more tasks on one workstation.
Fig. 3 shows a circular layout disassembly line with three
workstations, and the allocation of tasks on the workstations
is illustrated using the kettle example from Fig. 1. The figure
transfers components from the entrance to the disassembly
line, and components can be transferred on the conveyor belt.
When a subassembly is transferred to an appropriate worker
position, a worker can remove it from the workstation for
disassembly. In contrast, the remaining subassemblies to be
disassembled can continue to be transferred to the disassembly
line. Finally, the disassembled components are sent out from
the outlet. It can be seen that tasks 1 and 13 are assigned to
workstation one and executed by worker 1; tasks 3 and 15
are assigned to workstation three and executed by worker 3;
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task 8 is assigned to workstation two and executed by worker
2. 1

′
means that the component is disassembled during the

first round of transportation, and 13
′′

means that component
13 is disassembled when it is transported to workstation 1 in
the second round. Therefore, the task sequence and execution
order are 1, 3, 8, 13, and 15.

The learning effect means that in an actual disassembly
process, workers can continuously improve their work ef-
ficiency through learning, thereby gradually shortening the
time required to complete a disassembly task. To quantify, we
divide the skill level of workers according to the experience
range interval. Note that the improvement of productivity in
the learning curve is more significant in the initial stage and
will be decreasing along with experiences accumulating.

As shown in Table I, experience is divided into different
intervals to represent the corresponding skill level. From this
table, the skill level of workers can be obtained based on their
experience. By comprehensively considering the worker’s skill
level, learning ability, and task nature, the worker’s work can
be well adjusted, thereby improving the efficiency and quality
of the entire disassembly line.

Fig. 3. Schematic diagram of compass disassembly task
allocation.

TABLE I Division of skill levels based on experience

Skill level Level 1 Level 2 Level 3 Level 4 Level 5
Exp. interval [0,50) [50,100) [100,150) [150,200) [200,+∞)

E. Mathematical Model

Notations used in the model to be presented in Section II
are summarized as follows:

Sets:

W Index set of workstations, W = {1, 2, ...,W}.
S Index set of skills, S = {1, 2, ..., S}.
R Index set of workers, R = {1, 2, ..., R}.
P Index set of products, P = {1, 2, ..., P}.
D Index set of shifts, D = {1, 2, ..., D}.
K Index set of positions on each workstation, K = {1, 2, ...,K}.
L Index set of skill level index, L = {1, 2, ...L}.
Jp Subassembly set of product p.
Ip Task set of product p.

Iconpi Task set that conflicts with task i of product p.

Iprepi Immediately preceding task set of task i of product p.

Parameters:

Tpirl The time needed for performing task i on product
p by the r-th worker with skill level .

E0
rs The initial experience of r-th worker’s skill s.

Elb
sl The lower bound of experience required for skill s

at level l.
Cw Startup cost of workstation w.
Vpj Value of subassembly j of product p.
αs Learning effect coefficient of skill s. The experiential

benefit of workers for skill s is equal to the execution
time multiplied by the coefficient.

Ciw The cost incurred per unit of time for disassembly
activities (covering employee salaries, electricity)
expenses, equipment depreciation, etc.

M A sufficiently large number.
Tt The total duration of shift t

Decision variables:

xpiwkt In shift t, if task i of product p is executed at the k-th
position on workstation w, xpiwkt = 1; otherwise
xpiwkt = 0.

zrwt In shift t, if the r-th worker is assigned to the w-th
workstation, zrwt=1; otherwise zrwt = 0.

uwt In shift t, if the w-th workstation is started,uwt = 1;
otherwise uwt= 0.

yrslpiwkt In shift t, if task i of product p is executed by r-th

worker at the k-th position on workstation w and the

level of skill sis l, then yrslpiwkt = 1; otherwise yrslpiwkt = 0.

erst In shift t, experience corresponds to skill s of worker r

spiwkt In shift t, start time of task i of product p at position k on
workstation w.

CDP-L is formulated as follows:
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max

∑
p∈P

∑
j∈Jp

∑
i∈Ip

∑
w∈W

∑
k∈K

∑
t∈D

Vpjdpjixpiwkt −
∑
w∈W

∑
t∈D

Cwuwt

∑
p∈P

∑
r∈R

∑
k∈K

∑
s∈S

∑
w∈W

∑
i∈Ip

∑
l∈L

∑
t∈D

Ciwy
rsl
piwktTpirl−

∑
r∈R

∑
t∈D

crtTtzrwt

)
(1)

s.t.
∑
r∈R

zrwt = uwt,∀w ∈W,∀t ∈ D (2)

∑
w∈W

zrwt ≤ 1,∀r ∈ R,∀t ∈ D (3)

zrwt ≥ yrslpiwktTpirl,∀r ∈ R,∀s ∈ S,∀l ∈ L,∀p ∈ P,
∀i ∈ Ip,∀w ∈W,∀k ∈ K,∀t ∈ D

(4)

∑
p∈P

∑
i∈Ip

xpiwkt ≤Muwt,∀w ∈W,∀k ∈ K,∀t ∈ D (5)

∑
t∈D

∑
w∈W

∑
k∈K

xpiwkt ≤ 1,∀i ∈ Ip,∀p ∈ P (6)

∑
p∈P

∑
i∈Ip

xpiwkt ≥
∑
p∈P

∑
i∈Ip

xpiwk+1t,

∀w ∈W,∀k ∈ K\{K},∀t ∈ D
(7)

∑
w∈W

∑
k∈K

∑
t∈D

xpiwkt +
∑

i′∈Iconpi

∑
t∈D

∑
w∈W

∑
k∈K

xpi′wkt ≤ 1,

∀i ∈ Ip, p ∈ P
(8)

xpiwkt ≤
∑

i′∈Ipre
pi

∑
w′∈W

∑
k′∈K

∑
t′∈D

xpi′w′k′t′

∀i ∈ Ip,w ∈W,∀k ∈ K,∀p ∈ P,∀t ∈ D
(9)

ers1 = E0
rs,∀r ∈ R,∈ S (10)

erst = erst−1 +
∑
p∈P

∑
i∈Ip

∑
k∈K

∑
l∈L

∑
w∈W

αsTpirly
rsl
piwkt

∀r ∈ R, s ∈ S,∀t ∈ D\{1}
(11)

∑
k∈K

∑
s∈S

∑
i∈Ip

∑
r∈R

∑
l∈L

∑
p∈P

yrslpiwktTpirl ≤ Tt

∀t ∈ D,∀w ∈W
(12)

∑
l∈L

∑
r∈R

yrslpiwkt = xpiwktbpis

∀p ∈ P, w ∈W, s ∈ S, k ∈ K, i ∈ Ip, t ∈ D
(13)

Elb
sl −M

(
1− yrslpiwkt

)
≤ erst

≤ Elb
sl+1 +M

(
1− yrslpiwkt

)
∀p ∈ P, w ∈W, r ∈ R, s ∈ S, k ∈ K, l ∈ L, i ∈ Ip, t ∈ D

(14)

sp′i′wkt +
∑
s∈S

∑
l∈L

∑
r∈R

yrslpi′wktTpi′rl

≤ spiwk+1t +M (2− xpiwk+1t − xp′i′wkt)

∀w ∈W, i ∈ Ip, i′ ∈ Iprepi , k ∈ K, k′ ∈ K, p ∈ P, t ∈ D

(15)

spi′w′k′t +
∑
s∈S

∑
l∈L

∑
r∈R

yrslpi′w′k′tTpi′rl

≤ spiwkt +M (2− xpiwkt − xp′i′w′k′t)

∀w ∈W, i ∈ Ip, k ∈ K, t ∈ D, p ∈ P

(16)

The objective function (1) is to maximize profit, equal to the
total value of the disassembled parts minus the cost of starting
the workstation and the level-determined disassembly and
employee costs. Constraint (2) indicates that only one worker
can assign each idle workstation. Constraint (3) indicates that
workers can only be assigned one workstation in the same
shift. Constraint (4) indicates that if worker r performs a
specific task i at workstation w and time period t, then worker r
must be assigned to workstation w and time period t to ensure
the consistency of task execution and worker allocation, and
avoid the contradictory situation that a worker is not assigned
to a workstation in a certain time period but performs a task
at the workstation. Constraint (5) indicates that tasks can only
be assigned to enabled workstations. Constraint (6) indicates
that each task can only be executed once in the same shift.
Constraint (7) indicates that the positions of executing tasks
are left-aligned; when a task is in the latter position, there must
be a task in the previous position. Constraint (8) indicates that,
at most, one conflicting task can be executed; task conflict is
avoided. Constraint (9) indicates that the priority relationship
of tasks is satisfied; at least one of the predecessor tasks
is executed. Constraint (10) indicates the initial experience
of the first shift. Constraint (11) states that during the same
shift, cumulative skill experience is gained when performing
disassembly tasks. The experience from this shift is calculated
and added to the worker’s experience before the start of the
next shift. Constraint (12) indicates that the total duration of
the disassembly task cannot exceed the duration of the shift.
Constraint (13) indicates that the skill level of the workers in
the same shift remains unchanged. Constraint (14) represents
the experience range constraint of the skill level. Constraint
(15) limits the execution order of tasks on workstations.
Constraint (16) indicates that the start time of a task must
be immediately after the start time of the previous task.

III. PROPOSED ALGORITHM

A. Algorithm Description

The traditional A3C method requires multiple working
nodes to update gradients synchronously and use the actor-
critic method to update the globally shared strategy and
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value function. IMPALA [30] uses a decoupled Actor-Learner
structure, which allows data collection and model learning to
be optimized separately, thereby achieving efficient parallel
computing. Its core innovation lies in the use of a decoupled
Actor-Learner architecture, where multiple Actors (executing
agents [31]) run the environment in parallel, generate tra-
jectories and send them to a centralized Learner (learning
agent), which performs efficient batch gradient updates on
the GPU. The V-trace off-policy correction algorithm is used.
Since the data generated by the Actor may lag behind the
current Learner’s strategy, IMPALA uses the V-trace algorithm
to correct the gradient estimate to reduce the deviation caused
by off-policy learning. Fig.4 shows the framework for solving
C-DLBP-HLWA based on IMPALA. The IMPALA algorithm
deploys multiple Actor processes, and each Actor interacts
with the C-DLBP-HLWA environment independently. Each
Actor receives the current state of the disassembly line, includ-
ing features such as task assignment, workstation load, product
information, and worker assignment. The Actor uses the policy
network to generate action A, such as assigning task 1 to
workstation 1, and sampling discrete actions according to the
current policy. Each Actor generates an experience trajectory
(S0, A0, R0, S1, . . . , St), and all Actors store the generated
trajectory data (including state, action, reward, and policy
probability) in a shared experience queue, and then perform
importance sampling to record the probability distribution of
the policy when generating the action, which is used to correct
the off-policy deviation later. The Learner randomly extracts
a batch of trajectory data from the experience queue. The V-
trace algorithm is used to calculate the corrected value target,
and the off-policy data distribution difference is adjusted by
the importance weight. The value network parameters are
then updated to minimize the mean square error between
the predicted value and the V-target. At the same time, the
learner calculates the policy gradient, combines the advantage
function

(At = Rt + γV (St+1)− V (St))

and the importance weight (ρt), and updates the policy
network parameters. Network synchronization periodically
synchronizes the updated policy network parameters to all
actors.

Fig. 4. Framework for DLBP-HLWA based on IMPALA.

B. The working principle of V-trace

The core idea of the V-trace algorithm is to process the
data generated by multiple parallel Actor sampling through
traditional Monte Carlo estimation and temporal difference
learning, and eliminate the deviation between different strate-
gies. The specific calculation steps are as follows: 1. Calculate
the behavior strategy ratio:

ρt =
π (at | st)
µ (at | st)

Among them, π is the current strategy, µ is the old strategy
(in IMPALA, it refers to the strategy of each Actor).

2. Calculate the corrected TD target: The core of V-trace is
the corrected temporal difference (TD) target. For each time t,
we calculate a corrected target value V V-trace

t , which combines
the behaviors sampled from the current strategy and the old
strategy. The specific formula is as follows:

V V-trace
t = rt + γ (1− ρt)V

V-trace
t+1

Among them, rt is the reward at the current moment, γ is the
discount factor, and ρt is the ratio of the current strategy to the
old strategy. The key to the correction step: By correcting the
temporal difference target by ρt, the deviation introduced by
the policy update is reduced. This allows even the experience
generated under the old policy to be effectively used for
learning under the current policy.

3. Update the advantage function: With the correction value
obtained in the previous step, we can use it to update the
advantage function of the strategy:

At = Ât + ρt
(
V V-trace
t − V (st)

)
Among them, At is the traditional advantage function estima-
tion, and V (st) is the value function of the current state.

In this way, V-trace corrects the samples generated from
different strategies so that all experiences can be used to
update the current strategy, thereby reducing the deviation
between strategy updates. Since the Actor makes decisions
at an earlier time step, its strategy may be outdated during
learning, so IMPALA performs off-strategy correction through
the V-trace method. Unlike traditional importance sampling,
V-trace uses truncated importance weights, which not only
controls the estimation variance, but also effectively adjusts
the error caused by strategy lag. In the scenario of experience
replay, V-trace can still ensure a high data utilization rate,
making IMPALA more stable and efficient in distributed
reinforcement learning.

C. Aciton and State Space

In the IMPALA algorithm, the state space

St = [p, r, w, Ip]

includes disassembled product p, disassembly worker r, work-
station w and disassembly task Ip, where St[0] = p, St[1] =
r, St[2] = w, St[3] = Ip. Whenever a valid disassembly
step is taken, the state S′t is updated. The initial state of St is
[0,0,0,0], indicating that disassembly has not yet started. When
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disassembling a product, it starts from p = 1 and proceeds in
sequence. When a product is disassembled, the state switches
and is updated. Actions in the IMPALA algorithm

A = [IP , w, r]

is used to determine the scheduling of products for workers,
select product disassembly tasks, and assign them to work-
station w. Where A[0] = Ip, A[1] = w,A[2] = r. When
disassembling product p, use set Ic to store the disassembly
tasks that need to be disassembled. Check state St[3]. If St[3]
is 0, it means that the product has no disassembly task. Then
let A[0] select a product with a disassembly task from set Ic
and update St[3]. If St[3] is not 0, it means that the product
has task I that needs to be disassembled, so St[3] is not
updated. Similarly, in order to assign the disassembly product
task to the appropriate workstation, based on the current state
of the disassembly task St[3], determine which workstation the
disassembly task of product p is assigned to and store it in set
Wc. Then, A1 selects which workstation the disassembly task
is assigned to from Wc and updates St[2]. Finally, in order to
assign the appropriate worker to the disassembly task, action
A2 determines the disassembly worker based on state St[1].
The pseudo code is given in Algorithm 1. The action and state
definitions are shown in Figure 5. The reward function Re
guides the training process of the IMPALA algorithm. The
disassembly state is determined by the state S[t], the actor
selects actions and executes them according to the current
strategy, and the learner updates the strategy by training the
model and ultimately decides on the change of strategy.

Fig. 5. Definition of actions and states.

D. Reward Definition

The reward Re represents the total profit generated by
all shifts. After the disassembly operation is completed,
the disassembly cost dismantling cost is calculated. The
disassembly cost is the product of the workstationcost
generated per unit time of the disassembly activity and the task
execution time. From this, the profit income obtained from
the component can be determined. The workstation cost
workstation cost is the product of the number of open work-
stations in all shifts and the cost of opening the workstation.
The worker cost worker cost is the product of the worker cost

Algorithm 1 The Selection on Actions

Input: Action set A = [Ip, w, r], State St = [p, r, w, Ip]
Output: Updated state St = [p, r, w, Ip]
1: Initialize state St = [0, 0, 0, 0]
2: Initialize Ic = {}
3: Initialize Wc = {}
4: if St[0] == 0 then
5: p← 1
6: else
7: p← St[0]
8: end if
9: if St[3] == 0 then

10: Ip ← A[0] mod |Ic|+ 1
11: else
12: Ip ← St[3]
13: end if
14: Wc = {w | wexecutable tasksIp}
15: if Wc ̸= ∅ then
16: w ← A[1] mod |Wc|+ 1
17: else
18: w ← St[2]
19: end if
20: r ← A[2] mod (total number of available workers) + 1
21: Update Status St← [p, r, w, Ip]
22: if all tasks for the current product p are completed then
23: p← p+ 1
24: St[3]← 0
25: end if
26: return St

and working time of each shift. The formula for calculating
the reward is as follows:

Re = income− dismantling cost−
workstation cost− worker cost

where

income =
∑
p∈P

∑
j∈Jp

∑
i∈Ip

∑
w∈W

∑
k∈K

∑
t∈D
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∑
r∈R

∑
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workstation cost =
∑
w∈W

∑
t∈D

Cwuwt

worker cost =
∑
r∈R

∑
t∈D

crtTtzrwt

E. Environment Description

In the IMPALA algorithm, each episode consists of multiple
steps and generates an optimization plan for C-DLBP-HLWA.
Multiple Actors observe the state of the environment and select
a feasible task allocation plan based on the policy network, that
is, select suitable workers and workstations for product tasks.
After the Actor selects the action At, the environment will
feedback the new state St+1 and the corresponding reward
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Re, and then store the experience in the shared experience
queue. Learner samples data from the experience queue, uses
V-trace to correct policy deviations, calculates the value target
(V-target), and optimizes the policy network based on policy
gradients. At the same time, the updated policy parameters
are synchronized to each Actor to ensure that the model
can continue to improve. After training is completed, the
maximum reward value of the average obtained during the
training process is reported.

In the environment design, as shown in Fig. 6, a circular dis-
assembly line with three workstations. We consider a washing
machine product that is disassembled in the order of tasks 1, 4,
8, and 12. Initially, the Actor provides the environment with an
action A = [1, 1, 1], indicating that the product is disassembled
by worker 1 in workstation 1 for task 1. After completing
this disassembly step, the state is updated to St = [1, 1, 1, 1],
indicating that product 1 is being disassembled by worker
1 in workstation 1 for task 1. The Actor then receives the
updated state and reward and proceeds to the next action. In the
figure, steps represent multiple actions required to disassemble
product 1.

Fig. 6. Algorithm environment design for DLBP-HLWA.

IV. EXPERIMENTAL STUDIES

All code implementations were carried out using PyCharm
Community Edition 2023.2.3 and executed with Python 3.10.
All experiments were conducted on a workstation equipped
with a 13th Gen Intel(R) Core(TM) i5-13500H processor (2.60
GHz) and 16 GB of RAM, ensuring a consistent and reliable
computational environment. This section aims to verify both
the correctness of the proposed model and the effectiveness of
the IMPALA algorithm for training. First, the model’s validity
is confirmed by solving it using the CPLEX 12.8.0 solver. Sub-
sequently, an environment tailored to the IMPALA algorithm
is developed, and its training results are manually verified to
ensure algorithmic accuracy. This manual verification process
is essential for identifying potential coding errors or algo-
rithmic issues that could impact result reliability. Finally, the
performance of the IMPALA algorithm is compared against
that of CPLEX, A2C, SAC, DQN, and DDPG to evaluate its
effectiveness under consistent conditions.

A. Experimental Cases and Parameter Settings

This study focuses on multi-product DLBP. Five products
of different scales, including washing machines, flashlights,
electric kettles, computers, and compasses, were selected and
assembled into various multi-product cases [32] for testing.
Table II shows the detailed information of these products, and
Table III shows the scale information of the combined cases.

TABLE II Product set

Product Num. of
tasks

Num. of
subassemblies

Num. of
skills

Washing machine 10 15 3
flashlight 13 15 3

Kettle 14 19 3
Computer 13 13 3
Compass 15 18 3

TABLE III Case information.

Case #
Product Num.

of
tasks

Num.
of

skillsWashing Flash Kettle Computer Compassmachine light

1 1 1 0 0 0 23 3
2 0 1 1 0 1 39 3
3 1 1 0 1 1 51 3
4 1 2 1 1 1 80 3
5 2 2 2 2 2 130 3

B. Analysis of Experimental Results

We use CPLEX to test the experimental cases, setting a
maximum runtime of four hours to search for the optimal
solution. The experimental results are shown in Table IV. The
disassembly sequence represents the optimal solution that can
be obtained. Taking Case 1 as an example, in the first shift,
the disassembly sequence indicates that tasks 10 and 20 are
assigned to workstation 1 and executed by worker 1, tasks 11,
19 and task 3 are assigned to workstation 2 and executed by
worker 6, and task 1 is assigned to workstation 3 and executed
by worker 12. The benefit column represents the target value
corresponding to this disassembly sequence [33].

The value of the best upper bound does not necessarily
correspond to a feasible solution. There are two solution states
in one column. Best means that the current solution is the
optimal solution of the model, and feasible means that the
current solution is a feasible solution but not the optimal
solution. For example, in Case 2, the optimal solution for
the return is 1931, but the feasible solution is 1909. The gap
indicates the gap between the current solution and the best
upper bound, which can be used to judge the quality of the
current solution. The gap value in Case 2 is 1.17 percent.
The calculation time column indicates the time required to
obtain the current sequence. For example, the calculation time
in Case 2 is 6575.55 seconds. The results indicate that due to
the complexity of the model and the high dimensionality of the
decision variables, CPLEX performs inefficiently to solve this
problem. In Case 1, CPLEX can find the optimal solution.
However, as the scale of cases increases, the solution time
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TABLE IV CPLEX solutions

Case # Disassembly sequence Profit (Best Bound) Solution status Gap Computing time(s)

1 1 : (10, 20) → 1, (11, 19, 3) → 6, (1) → 12 1971 (1971) optimal 0.00% 88.98

2 1 : (1, 11) → 9, (25) → 7, 3 : (9, 10, 39) → 3 1909 (1931) feasible 1.17% 6575.55

3 1 : (11, 37) → 4, (1, 9, 24) → 6, (13, 20) → 7,
3 : (10, 25, 51) → 3

3131 (3482) feasible 11.23% 14400.0

4
1 : (1, 11, 21, 34, 47, 60, 74) → 10,

2 : (9) → 6, (88, 23, 30, 49, 36, 43) → 1,
3 : (19, 10) → 6

5146 (5952) feasible 15.66% 14400.0

5 —a — — — —

a For Cases 4-6, CPLEX can’t find a feasible solution within the set 4 hours.

TABLE V IMPALA Solutions

Case # Iterations / Population Disassembly sequence Profit Computing time(s)

1 100 1 : (1 : 4, 8, 12, 10) → 2, (15, 20, 17, 19) → 4 1971 26.54

2 100 1 : (1, 10, 11, 21, 24) → 10, (37, 39) → 12, 2 : (7, 14, 18, 20) → 5
3 : (3, 9, 6, 23) → 7, (26, 31, 34, 36) → 9

1927 26.46

3 100 1 : (2, 41) → 5, (7, 5, 8, 9, 10) → 12, 2 : (11, 24) → 6, (14, 19, 23, 20) → 12
3 : (27, 33, 35) → 2, (47, 46, 51, 44, 49) → 4

3461 27.75

3 100
1 : (2, 8, 9, 10, 11, 15, 18, 19, 20) → 7, (21, 29, 33, 30) → 2
2 : (7, 5, 17, 34, 37, 42, 46, 43) → 8, (24, 50, 47, 56, 58) → 3

3 : (78, 84, 83, 88, 81, 86) → 9, (61, 65, 68, 72, 71, 73, 69) → 1
5937 23.65

5 100
1 : (1, 11, 73, 87, 107, 122) → 1, (21, 23, 34, 36, 47, 49, 60, 62) → 2

2 : (7, 10, 17, 20, 110, 112, 115, 125, 127, 130) → 6, (27, 32, 40, 45, 59, 72) → 8
3 : (3, 9, 6, 13, 19, 16, 83, 100) → 10, (102, 113, 117, 128) → 11, (30, 43, 53, 66) → 12

9806 25.64

also increases. For cases 3 and 4, CPLEX fail to find the
optimal solution within the time limited and only a feasible
solution found. In cases 3 through 5, the increasing problem
scale prevents CPLEX from generating even a feasible solution
within the specified time.

Similarly, we use IMPALA to test the above cases. Be-
cause IMPALA maintains an approximately constant single-
step update time in a distributed environment, the algorithm
shows stable time efficiency across tasks of different sizes,
resulting in similar times to reach the optimal solution. The
experimental results are shown in Table V.

The complexity of the algorithm is the primary factor that
influences its running time. Comparison of Table IV and Table
V shows that, for the first four cases where CPLEX finds
the optimal solution, the algorithm achieves the same solution
with a much shorter running time. For case 2 where CPLEX
gives a feasible solution, the proposed algorithm can find a
higher quality solution in a shorter time. In case 5, where
CPLEX cannot find a feasible solution within the time limit,
the algorithm is able to obtain a high-quality solution in a
very short time. During the solution process, IMPALA is more
reasonable in task allocation between shifts, assigning tasks to
workers who are most suitable for these disassembly tasks.

In order to compare the advantages of the IMPALA al-
gorithm over other reinforcement learning algorithms, we
selected four algorithms, A2C, SAC, DQN and DDPG, for
experimental testing. These four reinforcement learning al-
gorithms are representative methods covering value-based
(DQN), policy-based (A2C), and actor-critic (DDPG, SAC)
methods. They are widely used in both continuous and discrete

action spaces, making them ideal benchmarks for compar-
ing IMPALA in terms of stability, convergence speed, and
scalability in complex scheduling problems [34]. In order to
prove the advantages of the IMPALA algorithm, we conducted
20 independent experiments for each case of each algorithm
and calculated the average value of each generation of 20
experiments. The iteration curve of each algorithm is plotted
according to the average value. The iterator curve of case 4-5
is shown in Fig 7. Combining the iteration curves of different
cases, it can be concluded that the convergence speed and
solution quality of IMPALA are higher than those of other
intelligent algorithms. In cases 1-5, the profit of IMPALA is
always the highest value. For example, in case 5, the profit of
IMPALA is 9806, while the profit of DDPG is 9586, and the
calculation time is stable at about 25 seconds, which is much
lower than DDPG’s 150 seconds. In contrast, although A2C
and SAC have shorter computation time (10-16 seconds), their
profits are significantly lower than IMPALA. DQN performs
close to IMPALA in some cases (such as cases 2 and 4),
but its solution quality fluctuates greatly (profit 3205 in case
3 vs. 3461 of IMPALA). The results show that IMPALA
achieves a better balance in the exploration-exploitation trade-
off through distributed architecture and policy optimization,
and is suitable for real-time optimization requirements of
complex disassembly sequences.

V. CONCLUSION

This study established a mathematical model for C-
DLBP-HLWA[35] that integrates a cyclic layout, multi-period
scheduling, and worker learning effects, verifying its feasibil-
ity using CPLEX. The IMPALA algorithm was successfully
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(a) Case 4 (b) Case 5

Fig. 7. Iterative comparison.

TABLE VI Algorithm performance comparison

Case # Optimal profit Computing time(s)

IMPALA A2C SAC DQN DDPG IMPALA A2C SAC DQN DDPG

1 1971 1971 1576 1921 1934 26.54 9.48 8.31 6.12 132.95
2 1921 1919 1920 1921 1914 26.46 10.10 88.69 7.72 140.52
3 3461 3307 3320 3205 3396 27.75 10.63 8.57 8.69 139.25
4 5937 5754 5842 5906 5914 23.65 13.48 11.84 12.27 139.45
5 9806 9122 9678 9352 9586 25.64 16.61 13.57 14.54 150.27
Bold values indicate the bestperformance in each row.

applied for the first time to solve this problem, demonstrating
its ability to obtain high-quality scheduling solutions stably
and efficiently. Experiments confirm that the proposed method
offers significant advantages in dynamic task allocation and
resource optimization, providing new insights for real-time
scheduling challenges in intelligent manufacturing. Future
research will focus on exploring collaborative learning mech-
anisms within heterogeneous worker groups and extending
the model to multi-objective[36–39] optimization scenarios,
thereby further enhancing the algorithm’s industrial appli-
cability and generalizability. And adding future application
scenarios (such as robot disassembly and large-scale remanu-
facturing) to expand the impact.
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