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DART-GNN: A Dynamic Recurrent Graph Neural
Network for Multivariate Time Series Anomaly
Detection

Yuan Li, Yuhang Zhou, Qingzhong Yan, Xiang Wu, and Yuming Bo

Abstract—Detecting anomalies in multivariate time series is
critical for the safety and reliability of complex cyber-physical
systems. Graph Neural Networks (GNNs) have shown great
promise in this area by explicitly modeling the relational structure
between sensors to improve detection. However, the performance
of most GNNs is constrained by their reliance on static graphs,
which are unable to capture the evolving nature of relationships
between sensors in dynamic environments. To address this lim-
itation, we propose the Dynamic Attention Recurrent Two-step
Graph Neural Network (DART-GNN). Our framework constructs
a time-specific dependency graph by first using a Gated Recur-
rent Unit (GRU) to encode temporal context and then applying a
self-attention mechanism to infer relationships. A two-step Graph
Attention Network (GAT) then performs deep aggregation on this
dynamic graph, enabling the model to capture complex, higher-
order interactions by propagating information from second-
order neighbors. We validated our model’s performance through
rigorous experiments on the widely-used SWaT and WADI public
benchmarks. The results confirm that DART-GNN achieves a new
state-of-the-art, demonstrating superior performance compared
to a broad spectrum of baseline methods.

Key Words—Anomaly Detection, Graph Neural Network, GRU,
Multivariate Time Series.

I. INTRODUCTION

NOMALY detection in time series [1] generated by
cyber-physical systems (CPS) is a critical task for ensur-
ing their robust and dependable operation. As these systems
become more integrated with IoT devices and social struc-
tures, they produce increasingly complex data that reflects the
intricate interactions between physical processes and compu-
tational controls, as illustrated in Fig. E} Therefore, the ability
to automatically identify anomalous patterns is a cornerstone
for building intelligent and trustworthy CPS, as the detection
of these patterns provides valuable diagnostic insight into
underlying issues, from physical component wear to malicious
software activity.
Given the unpredictable nature of anomalies and the scarcity
of labeled data in real-world scenarios, unsupervised methods
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Fig. 1. An example of multivariate time series data from
three different sensors.

are widely employed. These approaches can be broadly catego-
rized by their underlying strategy. Distribution-based methods
aim to model the distribution of normal data in a feature space.
This category includes subspace-based techniques like PCA
[2l], which identifies anomalies based on high reconstruction
errors, and boundary-based techniques like One-Class SVMs
[3], which define a frontier around the normal data cluster.
In contrast, prediction-based approaches like AFMF [4] and
MTAD [5] first model the temporal patterns of normal data
and then flag instances where actual observations significantly
deviate from the model’s predictions. However, both categories
often struggle in dynamic environments with shifting data dis-
tributions, highlighting the need for more adaptable solutions.

The rise of deep learning has brought about more robust
analytical frameworks. Recurrent models, such as Long Short-
Term Memory (LSTM) networks [6], have shown particular
skill in modeling temporal dependencies within individual
sensor streams. At the same time, generative models like
Variational Auto-Encoders (VAE) [7] and Generative Adver-
sarial Networks (GAN) [8] learn to replicate the distribution
of normal data, identifying outliers that cannot be accurately
reconstructed. A notable limitation of these advanced models,
however, is that they usually process each time series in iso-
lation, ignoring the complex network of relationships between
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different variables.

To explicitly model these complex correlations, Graph
Neural Networks (GNNs) have become a key technology in
multivariate anomaly detection [9]]. Architectures like Graph
Attention Networks (GATs) [10] have advanced beyond sim-
pler models like Graph Convolutional Networks (GCNs) [[11]]
by learning to weigh the importance of different neighbors
during information aggregation. Nonetheless, the performance
of most GNN-based methods is fundamentally constrained
by a static graph assumption. These models typically infer
a single, fixed graph based on static node embeddings [12],
a representation that cannot adapt to the evolving operational
states of a real-world system and largely disregards the valu-
able temporal context embedded in the time series data itself.

To address these challenges, we propose the Dynamic
Attention Recurrent Two-step Graph Neural Network (DART-
GNN). Our framework is designed to learn a new graph
structure for each time instance directly from the data. First, a
Gated Recurrent Unit (GRU) [13]], chosen for its comparable
performance to LSTM with greater computational efficiency
and fewer parameters, processes the recent history of each sen-
sor to produce a context-aware temporal representation. Next,
a self-attention mechanism [14] uses these representations to
compute a time-specific adjacency matrix, capturing the most
salient relationships for that moment. Finally, a novel two-
step GAT performs a deep aggregation on this dynamic graph.
By propagating information across two hops, the model can
capture more complex, higher-order dependencies, which is
crucial for the precise identification of subtle anomalies.

To summarize, our main contributions are as follows:

1) We introduce a novel method for learning dynamic rela-
tional structures, where a GRU captures evolving sensor
states to guide an attention mechanism in constructing
a dependency graph at each time instance.

2) We propose a deep aggregation mechanism using a
two-step GAT. This allows our model to move beyond
immediate neighbors and capture complex, higher-order
dependencies by integrating information from the two-
hop neighborhood.

3) Our model achieves the best performance on public
benchmarks compared with literature methods and pro-
vides enhanced explainability by visualizing the learned
dynamic relationships.

II. RELATED WORK

This section reviews existing methods for anomaly detection
in multivariate time series, which can be broadly classified
into three categories: machine learning methods, deep learning
methods, and graph neural network methods.

A. Machine Learning Methods

Anomaly detection is firmly grounded in the realm of
unsupervised machine learning, where its primary objective
lies in the identification of irregular patterns without recourse
to labeled data. Characteristically, these methodologies op-
erate by constructing a model that encapsulates the normal
behavioral patterns inherent in the underlying data distribution.

Clustering-based techniques, for example, delineate anomalies
as data points exhibiting a significant degree of divergence
from all cluster centroids. This category encompasses promi-
nent algorithms such as K-Means [[15] and the distance-based
K-Nearest Neighbor (KNN) [16]]. Density-based approaches,
typified by the Local Outlier Factor (LOF) [[17], adhere to a
comparable principle, designating data points situated within
low-density regions as anomalous. Another prevalent strat-
egy is partitioning, exemplified by the Isolation Forest [18],
which isolates anomalies by leveraging their propensity to be
segregated from the majority of the data. However, a major
drawback of these methods is that they create a static model
of what is normal. As a result, they might have difficulty in
effectively detecting new types of anomalies that did not exist
in the training data distribution.

B. Deep Learning Methods

Endowed with the capability to learn complex, non-linear
representations from raw data, deep learning techniques have
emerged as a cornerstone of modern anomaly detection. These
methodologies can be broadly categorized into reconstruction-
based and prediction-based approaches. Reconstruction-based
models, which include AEs [[19] and VAEs [20]], are trained to
encode normal data into a low-dimensional latent space and
subsequently decode it back to its original form. Anomalies
are identified based on their high reconstruction errors. GANs
[8] present a more potent alternative, as they can learn the
distribution of normal data with greater precision. Models
such as MAD-GAN [21]] have successfully adapted the GAN
framework for multivariate time series by employing LSTMs
as both the generator and the discriminator.

Prediction-based models capitalize on the sequential nature
of time series data. RNNs [22] and LSTMs [23] excel at
modeling temporal dependencies; however, their sequential
processing manner may lead to inefficiency. Transformer-
based models [24] tackle this inefficiency through a parallel at-
tention mechanism, rendering them effective in capturing long-
range contextual patterns. Despite their inherent strengths, a
prevalent limitation of these deep learning methods is that
they frequently treat each time series as an independent
channel, thus failing to explicitly model the critical relational
dependencies across different variables.

C. Graph Neural Networks Methods

GNNs have recently emerged as a powerful solution to
directly address the limitations of previous methods, as they
explicitly model the relational dependencies between variables.
By treating each time series as a node, GNNs learn node rep-
resentations through the core mechanisms of message passing
and relational aggregation, enabling effective capture of inter-
variable interactions. Among the foundational architectures
in this domain, GCNs [25] stand out for their ability to
perform convolutional operations over a node’s neighborhood,
aggregating feature information from adjacent nodes to update
the target node’s representation. Building on this, GAT [26]]
introduces an attention mechanism that dynamically assigns
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Fig. 2. An overview of DART-GNN.

different weights to neighboring nodes based on their rel-
evance, allowing for more flexible and fine-grained feature
fusion. Meanwhile, GIN [27] excels in generating node repre-
sentations by iteratively aggregating multi-scale neighborhood
information.

A key challenge in applying GNNs to time series data lies
in the fact that the graph structure is often implicit rather
than explicitly given. Early models like STG [28] use manual
graph construction, impractical for unknown topologies. Ad-
vanced methods like GDN [12] integrate structural learning
with GNNs, inferring relationships from node embedding
similarity and using attention to capture sensor dependencies,
aiding anomaly detection and interpretation. GATAMAF [29]
advances this by using GATS to extract temporal features from
time series nodes, merging graph relational modeling with
temporal dynamics, then using masked autoregressive flow for
density estimation. Yet most approaches learn a static graph,
failing to adapt to evolving system dynamics or fully use
temporal context. This highlights the need for dynamic graph
frameworks responsive to temporal variations.

III. PROPOSED METHOD

To address the challenges of static relational models in time
series, we propose a novel framework called DART-GNN as
shown in Fig. [2l Our model’s core objective is to be deeply
aware of two key aspects of the data: the temporal evolution
within individual sensor streams and the dynamically changing
relationships that connect them. To achieve this, our frame-
work integrates three distinct modules. First, a GRU module
is tasked with encoding the recent history of each sensor into
a meaningful, context-rich vector. Second, a dynamic graph
learning module uses these vectors to infer a directed graph,
representing the most salient inter-sensor dependencies at that
specific moment. Finally, a multi-step graph aggregation mod-
ule operates on this dynamic graph, producing robust, context-
aware representations used to precisely identify anomalous
behaviors.

A. Problem Formulation

The task is to analyze a multivariate time series composed of
signals from N distinct sensors. This raw data is transformed
into a sequence of input instances by applying a sliding
window of a fixed size w. For any given time ¢, the model
receives an input window X() = [x"w“,...,x’], where
x' = [xi, ...,xﬁv]. The model must learn the distribution of
normal system behavior from this data without relying on
anomaly labels. Subsequently, its objective is to produce a
binary label y(¢) € {0, 1} for each time step, where y(¢) = 1
signifies the detection of an anomaly.

B. GRU-based Temporal Context Encoding

To derive a meaningful representation for each sensor, we
combine the node embedding with its recent dynamic behavior.
Each sensor i is assigned a unique, learnable embedding vector
vi € R? to represent its intrinsic properties. This embedding
vector is then merged with the sensor’s dynamic behavior by
concatenating it with the observed values within the current
time window. This combined information is processed by
a GRU, selected for its balance of expressive power and
computational efficiency. Then the GRU iterates through the
window’s data to produce a final hidden state.

t—-w+k

input, = [xl & vi]
h! = GRU (input,, ..

fork=1,...,w

., input,,,)

(D

where @ denotes vector concatenation, and the final hidden
state of the GRU, h! serves as the context-aware representation
of sensor i at time ¢.

C. Dynamic Graph Construction

This stage functions as a graph learning module that infers
the system’s relational structure in a data-driven manner. The
set of all sensor contexts, H' = [h{,... h}] € RNxdn  jg
fed into a self-attention mechanism. This mechanism treats
the sensors as nodes in a potential fully-connected graph
and learns the strength of the directed connection between
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them based on the similarity of their contextual states. This
is achieved by projecting the context vectors into Query Q
and Key K spaces and calculating their scaled dot-product
attention:

Q=HW,, K=HWg

S
Vi

where Wo, Wk € Rén*dn are trainable weight matrices and
\/d ensures numerical stability. After softmax normalization,
the resulting attention matrix A’ contains scores representing
the directed influence between any two sensors. However,
a fully-connected graph is often noisy and computationally
intensive. We therefore apply a sparsification step by selecting
only the top-k most significant relationships for each sensor.
This results in a sparse and focused adjacency matrix A’ that
represents the most critical inter-sensor dependencies for the
specific moment:

2

A/t

3)

“4)

; {1 if A;; is one of the top-k value
ij =

0 otherwise

D. Graph-based Anomaly Detection with Two-Step GAT Ag-
gregation

To fully leverage the learned graph, a deep aggregation
strategy is required, as anomalies can arise from complex,
cascading effects that are invisible to a sensor’s immediate
neighbors. A deeper aggregation is necessary to model these
multi-hop dependencies, so we employ a two-step GAT pro-
cess.

The first propagation step operates on the initial sensor
features xlm. To ensure the attention calculation is aware
of both the node embedding and its dynamic state, we first
create a fused representation ggt’l) by concatenating the static
embedding v; with the transformed features:

ggt,l) =v; ® W(])XEI) (5)

where W) is the learnable weight matrix for the first step.
This fused representation is then used to compute the attention
scores (-1 (i, j):

7D (i, j) = LeakyReLU(a V" [g{"V @ g'"V])  (6)

where a(!) is the attention vector for the first step. The scores

are normalized via the softmax function across the learned

neighborhood A} to get the final coefficients a/t.(t.’l), which are
(r.1).

i

used to produce the intermediate representation z

exp(z“D (i, j))

(t,1)
o = : (7
/ ZkeAgu{i}eXP(ﬂO’I)(l,k))
zgt’l):ReLU Z ai(;’l)W(l)Xy) ()
JjeALU{i}

The second step takes the intermediate representations
zl("l), which already contain rich, localized contexts as input.
This step allows information to propagate across a two-hop
distance, providing a much wider receptive field. It computes
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a new set of attention coefficients and generates the final node
representations z}"z)

gEI’Z) — W<2)z§t’l) (9)
72 (i, j) = LeakyReLU@?" [g{"? @ g"?])  (10)
w2 _ ___exp(@"D (i) an
Y Skearuiy exp(r2) (i, k))
(t.2) _ (t.2)yw(2),,(2,1)
z{"? = ReLU Z W@ (12)
JEALU{i}

where a® and W are the learnable parameters for the
second step.
: t _ 1, (t2) (t.2)

The final representations, Z' = {z1 N AN }, are used
for the forecasting task. Each node’s representation is fused
with its static embedding before being processed by a feed-
forward network to predict the sensor values at the next time
step &/*1:

K41 = fo([vioz™?, -

2
1 oz Y]

13)

’VN

where o represents the element-wise product and fy is a multi-
layer perceptron that acts as the output regressor.

E. Model Training and Inference

The model is trained via an end-to-end optimization process
with a forecasting-based objective. The parameters of the
entire DART-GNN are adjusted to minimize the Mean Squared
Error (MSE) between the model’s predictions and the actual
future sensor readings. The goal is for the model to become
an expert on the system’s normal operational patterns, such
that its predictions for normal data are highly accurate.

1 Tirain— 1
Luse = ——— > IR x5 a4
Tirain — W =

where Tiin is the total number of time ticks in the training
data.

During inference, this expertise is used to detect anomalies.
When a true anomaly occurs, the sensor’s actual behavior
will deviate from the model’s prediction of normal behavior.
The magnitude of this prediction error is therefore a strong
indicator of anomalous activity. We calculate a normalized
deviation score for each sensor to account for different scales
and signal variances. The final anomaly score for a given time
step is the maximum deviation observed across all sensors,
ensuring that an anomaly flagged on even a single critical
node is captured as a system-level event.

Err;(r + 1) =[x+ — 21+

Err; (1 +1) —
ai

(15)
Score(t + 1) = max (

A time step is then classified as anomalous if its score exceeds
a pre-determined threshold.
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Algorithm 1 Training and Inference for DART-GNN

1: Training Procedure

2: Input: Training data X;,4;,,, validation data X,,,;, window
size w, epochs E, learning rate 7, top-k value k.

3: Qutput: Trained model parameters ©, error normalization
stats u,o.

4: Initialize all model parameters ® = {Ogru, -

5: for e =1to E do

6:  for each time step t from w to Tj,4;, do

7

8

9

., 0mLpr}

Let X be the input window.
Compute context vectors H* = GRU(X®), v).
Compute adjacency matrix A’ = TopK(Attn(H")).

10: ZD — GATgep1 (X, A7, V).

11: ZD — GATgepa(Z*1, AY).

12: Predict next step &'+ = fg(Z*2),v).
13: Calculate loss Lysg = [|8"+ —x/*1]|2.
14: Update parameters ® «— © —nVgLysk.
15:  end for

16: end for

17: Use trained ® to get prediction errors Err,,; on X, ;.
18: For each sensor 7, calculate y; and o; from Erry, ;.
19: return trained parameters ® and stats u, o.

20: Inference Procedure

21: Input: Trained model O, stats u,o, test data Xeyr,
anomaly threshold 7.

22: Output: Anomaly labels Y.

23: for each time step ¢ from w to Ty.5; do

24:  Let X®) be the input window.

25:  Predict *! using the forecasting process.

26:  Calculate error Err;(t + 1) for each sensor i.

27:  Caleulate error Erri(r + 1) = [x!*! — £1*!| for each

Sensor.

28:  Calculate score S(¢ + 1) = max; - .

29:  Assign label y(z + 1) based on S(¢ + 11) > T,

30: end for

31: return anomaly labels Y,.;.

Erri(t+1)—p;
o

IV. EXPERIMENT

A. Datasets

Our model’s performance is evaluated on two widely used
public benchmark datasets for time series anomaly detection
as shown in Table. | both derived from real-world water
treatment test-beds.

The SWaT dataset [30] is generated from a scaled-down yet
realistic water treatment plant, representing a modern CPS.
Its training data includes recordings of two weeks of normal
system operation, while the testing data incorporates multiple
controlled physical attack scenarios as ground truth anomalies.
This dataset comprises 51 distinct sensor variables.

As an extension of SWaT, the WADI dataset [31] is sourced
from a more complex and larger-scale water distribution
network. It represents a more comprehensive water treatment,
storage, and distribution system with a higher complexity
level, featuring 127 sensor variables—making it significantly
more high-dimensional than SWaT.

TABLE I General Information about Dataset

Dataset SWaT WADI
Dimension 51 123
Training Size 496800 1048571
Testing Size 449919 172801
Anomalies 11.98% 5.99%

B. Implementation Details

All experiments are performed on a server outfitted with an
NVIDIA RTX 4090 GPU. The Adam optimizer is employed
to train our model, with a learning rate set to 0.001. A fixed
sliding window size of 15 is adopted across all experiments.
Regarding dataset-specific hyperparameters, the node embed-
ding dimension is configured as 64 for the SWaT dataset and
128 for the more complex WADI dataset. Correspondingly, in
the dynamic graph construction phase, the number of top-k
neighbors selected is set to 15 for SWaT and 30 for WADI.
To guarantee robust training, our models are trained for a
maximum of 100 epochs, and an early stopping mechanism
with a patience of 15 epochs is implemented to mitigate
overfitting.

C. Evaluation Metrics

To quantitatively evaluate the performance of our model,
three standard classification metrics are employed: Precision,
Recall, and Fl-score. Precision refers to the proportion of
correctly identified anomalies within all instances classified as
anomalous. Recall, alternatively termed sensitivity, quantifies
the proportion of all actual anomalies that are successfully de-
tected by the model. The F1-score, calculated as the harmonic
mean of Precision and Recall, serves as a comprehensive
metric that balances the trade-off between false positives and
false negatives. The formal definitions of these metrics are as

follows:
TP

TP + FP’
TP

TP + FN’
Precision X Recall

Precision =
Recall = (16)

F, =2X

Precision + Recall’

where TP, FP, and FN represent the counts of true positives,
false positives, and false negatives, respectively.

D. Baseline Comparison

Our model’s performance is compared against nine di-
verse baseline methods. These include the classical PCA
[2] and the prediction-based LSTM [6]. Additionally, sev-
eral reconstruction-based approaches are evaluated: the hy-
brid LSTM-VAE [32]]; DAGMM [33]], which incorporates a
Gaussian Mixture Model; the adversarially trained autoencoder
USAD [34]; and the GAN-based MAD-GAN [21]]. Finally, we
include three recent state-of-the-art models: the graph-based
TopoGDN [335]], the Transformer-based Graphformer [36], and
GATAMATF [37], which combines a graph attention network
with an autoregressive flow model.
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TABLE II Comparison with baselines on SWaT and WADI

datasets
Method SWaT WADI
Prec Rec F1 Prec Rec F1

PCA 47.12 4423 45.63 38.26 18.22 24.68
LSTM 5945 52776 5591 7242 2793 4043
LSTM-VAE 9540 5949 7328 4587 3212 37.78
DAGMM 7031 47.13 5643 5491 28.69 37.68
MAD-GAN 9333 6245 74.83 40.56 3873 39.62
USAD 96.35 6446 7724 86.32 27.87 42.13
TopoGDN 92.01 65.04 76.21 58.08 44.85 50.59
Graphformer 97.02 6548 78.19 68.25 4241 5231
GATAMAF 96.86 67.57 79.61 7851 4423 56.58
DART-GNN  98.02 68.44 80.60 90.63 42.76 58.11

As shown in Table. our proposed DART-GNN model
demonstrates superior performance across both the SWaT and
WADI datasets. On the SWaT dataset, DART-GNN achieves
the highest Fl-score at 80.60%, surpassing all nine baseline
methods. Notably, its performance exceeds that of the strongest
baseline, GATAMAF, and it also attains the highest scores in
both Precision at 98.02% and Recall at 68.44%. This balanced
and leading performance highlights our model’s effectiveness
at both accurately identifying anomalies and capturing a high
proportion of true fault events. The model’s capabilities are
further validated on the more complex WADI dataset. Here,
DART-GNN again achieves the highest Fl-score at 58.11%,
marking a significant improvement over all competitors. This
result is driven by an exceptionally high Precision of 90.63%,
the best among all methods, which demonstrates the model’s
robustness in a high-dimensional environment where it can
precisely identify anomalies without being overwhelmed by
false positives. These comprehensive results validate that our
approach of combining dynamic graph learning with deep
aggregation effectively models the complex relationships be-
tween sensors, leading to more accurate and reliable anomaly
detection.

E. Ablation Study

TABLE III Ablation Study on Model Components

SWaT WADI
Method Prec Rec Fl1 Prec Rec Fl1
DART-GNN 98.02 68.44 80.60 90.63 42.76 58.11
w/o Dynamic Graph ~ 95.23  58.12  72.18 8540 33.05 47.65
w/o GRU 96.18 64.03 76.88 88.27 38.52 53.63
w/o Two-Step GAT 97.51 6435 77.53 89.15 4148 56.62

To verify the individual contribution of our model’s key
architectural components, we perform a comprehensive abla-
tion study. In this analysis, we compare the full DART-GNN
framework against three distinct variants, each with a crucial
module disabled: (1) a version reliant on a static graph instead
of a dynamic one (w/o Dynamic Graph), (2) a version without
the GRU-based temporal encoding module (w/o GRU), and (3)
a version using a conventional single-step GAT (w/o Two-Step
GAT).

LI et al.: DART-GNN FOR MULTIVARIATE TIME SERIES ANOMALY DETECTION

As shown in Table. the complete DART-GNN model
consistently outperforms all its variants, confirming that each
component contributes positively to the final performance.
First, the importance of the dynamic graph is highlighted when
comparing DART-GNN to the variant with a static graph.
The w/o Dynamic Graph variant shows the most substantial
performance degradation across all metrics, with its F1-score
dropping by 8.42% on SWaT and a significant 10.46% on
WADI. This result strongly supports our core hypothesis that
a static graph is insufficient for modeling systems where
relationships between sensors evolve, and adapting the graph
structure at each instance is crucial for accurate detection.
Second, removing the GRU module also leads to a notable
decline in performance. Without the GRU to encode temporal
context, the model’s Fl-score falls to 76.88% on SWaT and
53.63% on WADI. This demonstrates that capturing temporal
context is a vital prerequisite for learning meaningful dynamic
graphs, as relying solely on static embeddings makes the
inferred relationships less informed and effective. Finally, we
analyze the impact of the two-step GAT. When replacing it
with a single-step GAT, the Fl-score drops from 80.60% to
77.53% on SWaT and from 58.11% to 56.62% on WADI.
While this variant performs better than the others, the per-
formance gap confirms the value of our deep aggregation
strategy. The shallow aggregation of a single-step GAT has
a limited receptive field, whereas the two-step process can
capture more complex, higher-order dependencies necessary
to identify certain anomalies. The ablation study confirms that
the synergy of temporal context encoding, dynamic graph
construction, and two-step aggregation is essential to the
superior performance of DART-GNN.

TABLE IV Computational Cost Analysis of Ablation

Variants
SWaT ‘WADI
Training Time  params  Training Time  Params
Method / Epoch (s) (KB) / Epoch (s) (KB)
DART-GNN 2.45 231 26.81 834
w/o GRU 2.08 78 20.66 337
w/o Two-Step GAT 1.72 209 17.87 775

In addition to detection accuracy, computational efficiency
is a critical factor for the practical deployment of anomaly
detection models. The computational cost of DART-GNN is
primarily determined by three components: the GRU encoder,
the dynamic graph construction, and the two-step GAT. For a
multivariate time series with N sensors and a window size
of w, the complexity of the GRU encoder is O(N - w?).
The dynamic graph construction, which is dominated by the
matrix multiplication of the Query and Key matrices, has a
complexity of O(N?). The two-step GAT, with L = 2 layers,
has a complexity of approximately O(L - (& + N)), where &
is the number of edges in the sparse graph.

To provide practical insights, we record the training time
per epoch and the number of parameters for each model on
different datasets, as shown in Table. The w/o GRU variant
is the most lightweight in terms of model size, reducing the
parameter count by approximately 66% on the SWaT dataset
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Fig. 3. PCA visualization of sensor representations. (a) During normal operation, functionally related sensors form a tight
cluster. (b) During the anomaly, the representation of the faulty sensor 1_FIT_001_PV moves away from its direct controller
1_MV_001_STATUS but remains close to other stable, related neighbors.
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Fig. 4. Hyperparameter sensitivity analysis of Top-k

compared to the full DART-GNN model. This is expected,
as the recurrent network is the most significant contributor
to the model’s complexity. Similarly, replacing the two-step
GAT with a single-step version reduces the parameter count
and makes it the fastest to train. While these variants offer
improvements in efficiency, their reduced performance in the
main ablation study confirms that the computational costs
of the GRU and the two-step GAT are justified by their
substantial contributions to detection accuracy. The full DART-
GNN model maintains a reasonable parameter count and
efficient training times, validating its practicality for real-world
application.

F. Hyperparameter Analysis

The hyperparameter k, which determines the number of
neighbors each node considers when constructing the dynamic
graph, is crucial to the model’s performance. To find an
optimal value for k, we conduct a sensitivity analysis. We
center our search for k around a value corresponding to
approximately 25% of the total number of sensors for each
dataset, as this provides a reasonable starting point for cap-
turing significant relationships without introducing excessive
noise.

The results of this analysis are presented in Fig. f] For
the SWaT dataset, we test k values from 10 to 20. The
model’s performance peaks at k = 15, achieving its best F1-
score of 80.60%. This suggests that for the SWaT system,
considering roughly 29% of the other sensors as potential
neighbors provides the optimal balance between capturing
sufficient context and avoiding noise from irrelevant nodes. For
the more complex WADI dataset, we test k values from 25 to
35. The results confirm that a larger neighborhood is necessary
for this higher-dimensional system. The model achieves its
best Fl-score of 58.11% at k = 30, which corresponds to
approximately 24% of the total sensors. As with SWaT, the
performance degrades as k moves away from this optimal
value, indicating that a carefully selected neighborhood size is
key to the model’s success. Based on this empirical analysis,
we set k = 15 for the SWaT dataset and k£ = 30 for the WADI
dataset in all our experiments.

G. Qualitative Analysis

To provide deeper insight into our model’s capabilities
beyond quantitative metrics, this section presents a qualitative
evaluation of the DART-GNN framework. We first validate
the semantic reasonableness of the sensor representations
learned during normal operation, and then we analyze how
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these representations shift during an anomaly to provide an
interpretable diagnosis.

Validation of Learned Node Representations. A key
premise of our model is its ability to understand meaningful
relationships between sensors. To verify this, we first examine
the sensor representations learned during a period of normal
system operation. We extract the final hidden state vectors
from our GRU encoder for each sensor and project them into
a two-dimensional space using PCA. The result, shown in
Fig.[3a confirms that our model learns semantically meaning-
ful embeddings. Functionally related sensors are positioned
closely together, forming a distinct cluster. Specifically, the
representation for the flow sensor 1_FIT_001_PV is located
in close proximity to its direct controller, the motorized
valve 1_MV_001_STATUS. This demonstrates that our model
correctly captures the strong, direct dependency between these
components during normal operation.
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0.0

1.0 — prediction
— ground truth

°
o

1_MV_001_STATUS

0.0

00 600

Time

200

Fig. 5. Comparison of model predictions and ground truth
values for sensors

Anomaly Interpretation. Our framework’s explainability
is further demonstrated by analyzing how these representa-
tions change during an anomalous event. Figure [3b] visu-
alizes the sensor representations from the moment of the
anomaly. The representation of the attacked flow sensor
1_FIT_001_PV has moved significantly away from its direct
controller 1_MV_001_STATUS. This visual divergence is a
clear representation of the anomaly, showing the model’s
recognition that the flow sensor’s behavior is inconsistent with
the state of its valve. However, 1_FIT_001_PV representation
remains in proximity to other physically related and stable sen-
sors, such as the pressure sensor 1_AIT_001_PV and the level
sensor 1_LT_001_PV. This specific relational shift is what
enables the model’s robust prediction, which can be seen in
Fig.[5] By leveraging the graph structure, the model’s forecast
for 1_FIT_001_PV is influenced by the collective information
from its stable neighborhood, including 1_AIT_001_PV and
1_LT_001_PV. Even though its relationship with the valve has
been compromised, the model aggregates the stable context
from these other reliable neighbors to predict the expected
normal value for the flow. The anomaly is then detected
by the large discrepancy between this stable, context-aware
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prediction and the chaotic ground truth of the attacked sensor.
Furthermore, for the 1_MV_001_STATUS sensor, its predic-
tion remains perfectly aligned with its stable ground truth,
even during the anomaly. This indicates that the localized
fault in 1_FIT_001_PV did not adversely affect the model’s
predictions for healthy sensors, showcasing the model’s ability
to precisely localize faults.

V. CONCLUSION

In this work, we introduce DART-GNN, a novel framework
designed to overcome the shortcomings of static graph models
in multivariate time series anomaly detection. Our approach
integrates a GRU with a self-attention module, enabling the
model to generate adaptive graphs that reflect the evolving
relationships between sensors. Furthermore, by employing
a two-step GAT, our model captures complex, higher-order
dependencies that are often missed by conventional methods.
Our comprehensive evaluation on public benchmarks con-
firms that DART-GNN sets a new state-of-the-art, significantly
outperforming numerous baselines. An ablation study further
validates our design, confirming the essential contribution of
each core component. Qualitative analysis also shows that the
learned dynamic graphs offer valuable insights for anomaly
diagnosis. Future work will focus on investigating more
computationally efficient attention mechanisms to enhance
scalability, exploring the fusion of data-driven dynamic graphs
with static graphs derived from domain knowledge to improve
robustness, and adapting the framework for online learning in
streaming data environments.
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