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Multi-Objective Optimization of Multi-Factory
Remanufacturing Process Considering Worker
Fatigue
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Abstract—To achieve sustainable manufacturing of large-scale
discarded products, disassembly, recycling, and remanufactur-
ing are widely adopted across various industries. Multi-factory
remanufacturing is a complex working model that requires
coordination among different factories for disassembly, reman-
ufacturing, and resource circulation to achieve optimal resource
reuse and reduce environmental impact. Multi-skilled workers
play a crucial role in this process, and to fully harness the
potential of workers, skill training and task allocation need
to be considered. On the other hand, prolonged disassembly
leads to an increase in worker fatigue levels. Excessive fatigue
can result in reduced work efficiency and quality, even posing
a threat to worker health and safety. Considering the impact
of worker fatigue during disassembly is essential for achieving
healthy and efficient work. This work presents and addresses
a multi-factory remanufacturing process optimization problem
that considers worker fatigue. This problem is divided into three
phases: disassembly factory selection, disassembly scheduling,
and manufacturing factory selection. With the objectives of maxi-
mizing profit and minimizing fatigue index, a linear programming
mathematical model is established. Based on this, a discrete battle
royale optimizer is employed to solve the problem, and a novel
encoding structure is designed. The superiority and effectiveness
of the proposed optimizer are validated through experiments
on different scale cases and by comparing the results with the
carnivorous plant optimizer, migrating birds optimizer, dingo
optimizer, and fruit fly optimizer.

Key Words—Multi-factory remanufacturing process optimiza-
tion, multi-skilled worker, fatigue index, multi-objective optimiza-
tion, battle royale optimizer

I. INTRODUCTION

Uman society’s consumption patterns and technological
advancements have made tremendous progress in the
past few decades. However, this progress has also brought
forth a significant issue: many discarded products and elec-
tronic waste [[1], [2]. As technology continues to update and
the lifespan of products shortens, the quantity of discarded
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products rapidly increases, causing severe impacts on the
environment and resources [3], [4], [S]. Traditionally, dis-
carded products are regarded as waste and simply disposed
of, eventually ending up in landfills or incineration facilities.
However, this disposal method has significant negative impacts
on the environment and wastes resources [6], [7], [8]. In
recent years, as the environmental crisis intensifies and the
depletion of energy and natural resources becomes more
pronounced, many countries are implementing environmental
legislation that requires producers to take responsibility for
the entire lifecycle of their products to conserve resources and
safeguard the environment [9], [LO], [11]. To address these
issues, the multi-factory remanufacturing model has emerged,
and its structure is shown in Fig. [} As a resource-efficient
method, multi-factory remanufacturing transforms waste into
regenerated resources, helping to achieve efficient resource
use, reduce environmental impact, and enhance corporate
competitiveness [12], [[13], [14]. As an emerging model, multi-
factory remanufacturing faces a series of complex challenges,
as follows.

« Multi-factory coordination and collaboration: In a multi-
factory setting, it is necessary to coordinate disassem-
bly tasks and component circulation among different
factories, ensuring the synchronization of disassembly
lines with other remanufacturing processes to maximize
resource reuse.

« Optimizing the disassembly process: Different factories
may need to handle various types of products and ma-
terials, leading to increased complexity in internal dis-
assembly procedures that require effective organization
and management to ensure efficient disassembly and
maximize resource reuse.

o Training multi-skilled workers: In a multi-factory reman-
ufacturing model, nurturing and maintaining a workforce
with a diverse range of skills is a key challenge. This
entails providing extensive training to workers and match-
ing them with suitable tasks to ensure they are competent
in various responsibilities, thereby enhancing production
efficiency and quality.

» Worker fatigue management: Workers may be required to
engage in prolonged disassembly tasks, which can lead
to worker fatigue. Worker fatigue can impact their health
and safety, increasing the risk of accidents and errors.
This necessitates the implementation of effective work
schedule arrangements and safety measures to ensure
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Fig. 1. A multi-factory remanufacturing process optimization problem.

worker well-being while maintaining high efficiency and
quality.

In modern manufacturing, the challenges of the disassembly
line balancing problem (DLBP) [15] and the multi-factory
remanufacturing process optimization problem (MRPOP) are
two key issues. DLBP involves determining how to effi-
ciently allocate workers and equipment on the disassembly
line to achieve optimal production efficiency and resource
utilization[[16]]. On the other hand, MRPOP focuses on effec-
tively scheduling and coordinating disassembly tasks across
multiple factories to maximize overall disassembly efficiency
and resource utilization. Combining these two issues achieves
a more comprehensive and optimized process for disassem-
bling and recycling discarded products. By rationally allocat-
ing disassembly tasks across multiple factories and balancing
workloads for workers and equipment on the disassembly line,
overall production efficiency is enhanced, resource wastage is
reduced, and efficient recovery and reuse of discarded products
are ensured. Since the inception of DLBP, many scholars have
conducted in-depth research on it. Wang et al. [[17] introduce
partial dismantling and uncertain disassembly times into a U-
shaped disassembly line, establishing a mathematical model
for the U-shaped DLBP with partial dismantling modes, and
apply a multi-objective discrete flower pollination algorithm
for solving. Cui et al. [18] propose a discrete whale optimizer
to solve DLBP with the goal of profit maximization. Cil et
al. [19] propose a hybrid integer linear programming model
and an ant colony optimization-based heuristic algorithm to
solve the robot DLBP. In recent years, domestic and inter-
national scholars conduct relevant research on Multi-factory
Production Scheduling Problems (MPSP) [20], yet very few
explore MRPOP. For instance, Chung et al. [21] introduce an
enhanced genetic algorithm (GA) approach to solve distributed
scheduling models considering maintenance, aiming to mini-
mize job completion times. Marandi et al. [22] propose a novel
cloud theory-based Hybrid Cloud Learning Simulated Anneal-

ing (HCLSA) for solving multi-factory scheduling problems
in supply chains involving batch deliveries and assembly.
Gharaei et al. [23] study parallel multi-factory scheduling
problems with interfering job sets and present an effective
decomposition-based multi-objective evolutionary algorithm
to resolve them. Chung et al. [24] introduce an improved
GA for handling MPSP. Research into MPSP yields some
achievements. Building upon previous research on MPSP, this
work proposes MRPOP by considering worker fatigue, thus
filling the gap in previous research on MRPOP.

The actual disassembly process still relies primarily on man-
ual disassembly, and disassembly companies consider human
factors engineering as the foundation to ensure production
quality, safety, and flexibility in the disassembly line [25].
Workers typically possess multiple skills that enable them
to handle the frequent changes in the disassembly system
and perform various tasks. Human factors engineering re-
volves around human factors, thoroughly considering workers’
working conditions and physical and mental health, enabling
healthy and efficient work. This significantly enhances the
disassembly efficiency of the disassembly line while reducing
disassembly error rates. Therefore, to achieve healthy and
efficient disassembly for workers, considering human factors
engineering during the disassembly process and the rational
allocation of these multi-skilled workers are crucial. This
research has garnered widespread attention from scholars
both domestically and internationally. Lian et al. [26] pro-
pose a metaheuristic algorithm based on NSGA-II to solve
the problem of allocating multi-skilled workers, considering
worker skill combinations and differences in proficiency lev-
els. Liu et al. [27] establish a multi-objective mixed-integer
linear programming model and propose a GA to solve the
allocation of multi-skilled workers and assembly line bal-
ancing problem considering energy consumption. Carnahan
et al. [28] argue that the physical energy consumption of
workers during the disassembly process is a crucial factor
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that cannot be overlooked. Baykasoglu er al. [29] point out
that considering human factors engineering in the production
line positively impacts both production efficiency and worker
health. Otto et al. [30] provide an overview of existing
optimization methods for assembly line balancing problems
and job rotation scheduling problems considering ergonomic
risks. This work integrates DLBP into MRPOP, proposing a
multi-factory remanufacturing process optimization problem
considering worker fatigue index (MRPWF) and discussing
its specific application scenarios.

Given that MRPWF is an NP-hard problem, heuristic al-
gorithms typically tackle such problems. In relevant studies,
Guo et al. [31] present a multi-objective DLBP and utilize
a stochastic simulation approach involving simulated anneal-
ing and a multi-objective discrete grey wolf optimizer for
resolution. Fang et al. [32] introduce an evolutionary simu-
lated annealing algorithm for solving the multi-robot hybrid
DLBP. This problem involves minimizing cycle time, peak
workstation energy consumption, and total energy consump-
tion, among multiple objectives. Zhu et al. [33] propose a
Pareto Firefly Algorithm for solving a multi-objective DLBP
considering hazard assessment. This problem involves mini-
mizing the number of workstations, maximizing smoothness,
and minimizing the average maximum risk, solving multiple
objectives. These experiences provide us with inspiration and
ideas for solving the MRPWF.

The Battle Royale Optimizer (BRO), introduced by Rahkar-
Farshi in 2020, is a population-based metaheuristic opti-
mization algorithm inspired by the game PlayerUnknown’s
Battlegrounds (PUBG) [34]. It achieves the iterative evolution
of populations by simulating the search process of trying to
defeat neighboring soldiers in the game. We choose BRO to
solve MRPWF because, through its unique simulation of com-
petition and cooperation mechanisms, it demonstrates better
convergence performance and solution quality when handling
large-scale, multi-constrained problems [35], [36]]. Compared
to traditional multi-objective optimization algorithms, BRO
has more significant advantages in exploring the search space
and balancing local and global search.

The main contributions this work aims to make are:

1) Introducing DLBP into MRPOP while considering the
impact of worker fatigue, we propose MRPWF. A
mixed-integer programming model is formulated for this
problem, aiming to maximize disassembly profit while
minimizing the worker fatigue index.

2) For solving MRPWE, this work introduces a discrete
battle royale optimizer (DBRO). In this algorithm, we
devise a novel encoding structure to represent solutions,
and we design four soldier search strategies, namely se-
quential variation, task variation, workstation variation,
and factory swap, to enhance the algorithm’s capability
to search for optimal solutions.

3) Different experiments are designed to validate the al-
gorithm’s effectiveness. Compare the performance of
the DBRO algorithm with the carnivorous plant opti-
mizer (CPA) [37]], Migrating Birds optimizer (MBO)
[38], dingo optimizer (DOA) [39], and fruit fly op-
timizer (FOA) [40]. Evaluate the quality of solutions

these five algorithms provide for solving MRPWF us-
ing three Pareto performance indicators. Experimental
results demonstrate that the DBRO more effectively
addresses the proposed problem.

The remaining sections of this paper are organized as
follows. Section II describes MRPWF and its mathematical
model. Section III introduces the encoding and decoding
scheme of MRPWF, DBRO, and the soldier’s search and
battle processes. Section IV analyzes the experimental results.
Section V summarizes the work of this paper and discusses
future research directions.

II. PROBLEM DESCRIPTION

A. Problem Statement

As shown in Fig] MRPWF is divided into three main
phases.

1) Disassembly factory selection phase

This phase primarily involves product assignment. Product
assignment deals with how to distribute different End-of-
Life (EOL) products from the recycling center to the optimal
disassembly factories based on constraints.

2) Disassembly scheduling phase

This phase mainly includes disassembly line assignment,
task assignment, and workstation assignment. Disassembly
line assignment involves selecting a disassembly line in each
disassembly factory and assigning a product to it. Task assign-
ment involves selecting a disassembly task sequence of the
product. Workstation assignment involves assigning different
disassembly tasks of the product to different workstations on
the disassembly line.

3) Manufacturing factory selection phase

This phase handles subassembly assignment. Due to the
varying prices offered by different manufacturing factories
for the subassemblies and the differences in transportation
costs due to the distances between disassembly factories and
manufacturing factories, the related cost varies. Subassembly
assignment involves determining how to allocate the obtained
subassemblies to different manufacturing factories.

Therefore, the challenge of this problem lies in optimizing
a range of issues, including tasks and workstation assignments
within disassembly factories, as well as the selection of
suitable disassembly and manufacturing factories. Thus, effec-
tively utilizing existing resources, logically assigning product
demands from different customers to various factories, and
coordinating the plans of these factories constitute the primary
focus of this work.

Faced with increasingly complex products and disassem-
bly tasks, multi-skilled workers are crucial for addressing
MRPWE. Each disassembly task may require multiple skills,
as shown in Table [II Multi-skilled workers can rapidly ad-
just work assignments when facing various disassembly task
requirements, helping to reduce workstation overload and
enhance overall disassembly efficiency.

In the real world, the fatigue level of disassembly workers
is not constant, and it varies due to factors such as the fatigue
growth parameters associated with different disassembly tasks
and the duration of work. Therefore, it is necessary to schedule
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TABLE I Relationship between tasks and skills.

Tasks Skill

1 2 3 4 5
1 0 1 1 0 1
2 1 0 0 1 0
3 0 1 1 1 0
4 1 0 1 1 0
5 1 0 0 0 1
6 1 0 1 0 1

work hours reasonably to ensure that workers have adequate
rest time, mitigating both physical and psychological fatigue
during work.

F(t)y=1-¢" (1)

In equation (1), F(t) represents the fatigue level of the
worker, and A denotes the fatigue growth parameter for the
disassembly task. The variable ¢ represents the completion
time of the disassembly task. Fig. [3 illustrates the relationship
between working time and fatigue level. Fj,,, represents a
specific maximum fatigue threshold. When a worker’s fatigue
level exceeds this threshold, it increases the risk of injury and
reduces work efficiency. Since each workstation is assigned to
only one worker, we need to avoid assigning tasks that may
lead to health risks due to excessively high fatigue levels.

The objective of MRPWF is to maximize the profit obtained
from the disassembly of products while considering worker
fatigue levels. The following assumptions are made in this
work:

o Matrices D, R, and S are known.

« Not all subassemblies need to be disassembled (called
selective disassembly).

« Each workstation is assigned one worker.

« The disassembled products are infinitely supplied.

« Each disassembly task requires at least one disassembly
skill. The higher the skill level, the shorter the time
required to complete the task.

« The operating time of each workstation should be at most
the given system cycle time.

« Each activated workstation has at least one disassembly
task.

A

Fmax

F(t)

Task 1 (A=0.17)
Task 2 (A=0.12)
Task 3 (A=0.15)

Cumulative working time

Fig. 3. Relationship between work time and fatigue level.

B. Notations

For clear presentation, all notations used in this work are
listed as follows:

Sets:
K Set of disassembly factories, K ={1,2,...,K}.

M Set of Manufacturing factories, M = {1,2, ..., M }.
P Set of products, P ={1,2,..., P}.
I, Set of all subassemblies in product p, I, = {1,2,...,I,}.
J, Set of all tasks in product p, 3, ={1,2,...,J,}.
Set of linear workstations for the k-th factory,
WE = {1,2,..., Wi}
Wg Set of U-shaped workstations for the k-th factory,
WY ={1,2,..., W/}
E Set of sides of U-shaped disassembly line workstation,
E=1{1,2}.
N Set of all additional skills, N = {1,2,...,N}.

Indexes:
p Product index, pe P.

i Subassembly index, i€ |,.

Disassembly task index, j€ J,,.

Index of U-shaped workstation side, ¢ € E.
Disassembly factory index. k € K.
Manufacturing factory index. m € M.
Skills index, n € N.

S 3 x= o w
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Parameters:
Vmpi The m-th manufacturing factory acquires the price
of the i-th subassembly of the p-th product.

c{m i Transportation cost of the i-th subassembly of the
p-th product from the k-th disassembly factory to
the m-th manufacturing factory.

twpj Disassembly time required by workers at the w-th
workstation of the kth disassembly factory to
complete the j-th task of the p-th product.

chj The unit time cost of executing the j-th task of the
p-th product in the k-th factory.

cr The unit time cost of activating the k-th disassembly

factory.

¢k Cost of activating the w-th linear workstation of the

k-th disassembly factory.

<

¢y, Cost of activating the w-th U-shaped workstation of
the k-th disassembly factory.

Cost of worker skills training.

Disassembly incidence matrix.

Disassembly conflict matrix.

- Tv e

Disassembly precedence matrix.
Yiwn The matrix records the degree of mastery of the
n-th skill by workers at the w-th workstation in the
k-th factory in the initial state.

Bpjn  The matrix depicts the disassembly relationship
between the j-th task of the p-th product and
the n-th skill.

Fatigue growth parameter of workers completing

the j-th task of the p-th product.

9191'

Decision variables:
1, If the p-th product is assigned to the k-th

Zpk = disassembly factory;
0, otherwise.
1, If the j-th task of the p-th product is assigned
B for disassembly at the w-th linear workstation
pjkw

of the k-th disassembly factory;

0, otherwise.

1, If the j-th task of the p-th product is assigned

U to the e-side of the w-th U-shaped workstation

X .
pikwe at the k-th disassembly factory for disassembly;

0, otherwise.

—_

i~
I

factory is activated;

0, otherwise.

, If the linear disassembly line of the k-th disassembly

—_—

, If the U-shaped disassembly line of the k-th
disassembly factory is activated;

0, otherwise.

1, If the w-th linear workstation of the k-th

L disassembly factory is activated;

ukw =
0, otherwise.

1, If the w-th U-shaped workstation of the k-th
u,[jw = disassembly factory is activated;

0, otherwise.

1, If the i-th subassembly of the p-th product
is transported from the k-th disassembly
Akmpi =
onpt factory to the m-th manufacturing factory;

0, otherwise.

1, If workers at the w-th workstation of the
k-th factory utilize the n-th skill;
0, otherwise.

fkwn =

T, Cycle time of the k-th disassembly factory.

C. Mathematical Model
We formulate the optimization problem of MRPWF as:

max f = Z Z Z Z (Vmpi - chpi) Qempi

keKmeMpeP iel,

PIDIDNPIL AL

keKpeP jed, wewi;

S IDID I DI AT e )

keKpeP jed, weWi/ ecE

LoL U U
- Z kT = Z Z Chwtliow ~ Z Z Chwtiow

keK keK ngi‘ keK weWi’

_CZ Z Z(érkvvn_ykwn)

keKyweWk neN

minf2=Z Z (1_6—’%)4,2 Z (1_e—T§’) )

kengwi kEKweWi’

The objective function (2) represents the maximum profit
from disassembling the EOL product. The first term represents
the total profit of the subassembly minus the transportation
cost of the subassembly from the disassembly factory to the
manufacturing factory. The second and third terms represent
the disassembly cost of performing the disassembly task. The
fourth term represents the cost of turning on the disassembly
factory. The fifth and sixth terms represent the cost of turning
on the associated workstations. The seventh term represents
the training cost of the workers.

The objective function (3) represents the total fatigue level
of workers. The first term represents the fatigue of workers
on the linear disassembly line, and the second term represents
the fatigue of workers on the U-shaped disassembly line.

L L
Iy = Z Z OpitkwpiXpjkw (4)

peP jed,
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Tg - Z Z Z@pjtkijxgjkwe &)

peP jed, ecE

As shown in equation 4, TL represents the accumulated
fatigue time for workers completing tasks on the linear dis-
assembly line. As shown in equation 5, TY represents the
accumulated fatigue time for workers completing tasks on the
U-shaped disassembly line.

Z Qmpi < Z Z dptjx pjkw + Z Z delj Xpjikwe

meM weWLIE-:J weWUJEJ ecE (6)
VkeK, YpeP, Vielp\ {1}
Zzpkzl, VpeP )
keK
yi+yl <1, VkeK (8)
< L U
ok S Y +y¢, Vp€P, Vke K )
up, < vk, YweW;, VkeK (10)
ug, < yU, vywe WY, Vk e K (11)

Dkt D > A <2 VP EP, VkeK, Vi€,

wEWi weW]i/ ecE

(12)

Xk <ub, VpeP, YjeJd,, VkeK, Ywe Wk

7 (3)

X e < U VP EP, Vj€Jy, VhEK, Ywe W/, VeecE
(14)
WY < Z Bojniwns Yp € P, Yj€J,, Vk €K,
neN (15)

VweWY, Ve e E
< > Boinun, Vp € P, Vj €3, VK€K, Vw e W
neN

(16)

pjkw =

Eoun = Yiwns Yk €K, Yw e W, Vne N (17)

DD ki D) D | <1 vpeP, vied, (18)

keK | wewt weWV ecE
Z gy < Tho Yk € K, Y € Wy (19)
Jjedp
+U U
D D e < T VEEK Ywe W] o)

J€Ip e€E

Z w (XILU)kW _xIL’jsz’) + Wé Z X;jzkw -1]<0

WEWi‘ weWi‘

2D

Vk € K, vp € P7 Vj]ajZ € JP’ Spjlj2 = 1

U U U U U
Z (W (xpj,kwl - xpjzkwl) + (2Wk - W) (xpj,kw2 - xpjszZ))

wewW?
F2W/ L D0 D xpe = 1| < 0. VkEK, VpeP,

WEW}(] ecE

Viggz2 € Ips spjjjp =1

(22)
Z X;L7j2kw < Z Z Slefzx[L;j,kw’ VkeK, Vp eP,
weWk J1€Ip weWk (23)
Vj> € Ip, dpij, =0
Z Z p]zkwe = Z Z ZSPJJJZ p],kwe’ Vk € K,
WEWU ecE J1€3p WEWU ecE 24)
Vp e P, VjZ € Jp, dp]j2 =0
D (i) S 1 VKEK, Vp e P,
wew: (25)
VipsJz2 € Ip, 1, =1
U U
2 D (G e+ 3 < 1 VK€K VpEP,
weW,f/ ecE (26)
VjpJ2 € Ips 1pjyj, =1
2k €{0,1}, Vp e P, VkeK 27
X €401}, VpeP, Vi€ J,, Ywe Wy, Vke K  (28)
U . U
X €{0,1},vpeP,Vjed,, VYweW,, VkeK,
pjkwe { } p J p k (29)
Ve € E
yi €{0,1}, VkeK (30)
v/ €{0,1}, VkeK (31)
ub €{0,1}, Vke K, Vw e Wk (32)
up, €4{0,1}, Vke K, Ywe W/ (33)
Ewm € {0,1}, Yk e K, Yw e WF, Vne N (34)
T €R;, VkeK (35

Constraint (6) ensures that subassemblies obtained by dis-
assembling a product can be transported to only one manu-
facturing factory. Constraint (7) ensures that each product can
only be assigned to one disassembly factory. Constraint (8)
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ensures that only one type of disassembly line can be turned on
at a disassembly factory. Constraint (9) ensures that products
are only assigned to the disassembly factory that is currently
open. Constraints (10) and (11) ensure that the corresponding
workstations are only used after the disassembly line has been
activated at the disassembly factory. Constraint (12) ensures
that the disassembly task j for product p can only be assigned
to the workstation activated by the disassembly factory to
which the product assigned. Constraints (13) and (14) ensure
that the disassembly task j of product p is assigned to the open
workstation. Constraints (15) and (16) ensure that the skills
of the workers at the workstation meet the skill constraints
required for disassembly task j. Constraints (17) ensure that
the skills acquired by all workers are not reduced. Constraint
(18) indicates that each disassembly task is performed at most
once per product. Constraints (19) and (20) ensure that the
working hours of each workstation in each line do not exceed
the factory cycle time. Constraint (21) ensures that assigning
disassembly tasks for products to a linear disassembly line
conforms to the precedence relationship constraint.

Constraint (22) ensures that the assignment of disassembly
tasks of a product to a U-shaped disassembly line conforms to
the precedence relationship constraint. The first item ensures
that the workstation count of task j, is greater than or equal
to the workstation count of j; when the disassembly task is
assigned to the inlet side of a U-shaped disassembly line.
The second item ensures that the workstation count of task
Jj2 is less than or equal to the workstation count of j; when
the disassembly task is assigned to the outlet side of a U-
shaped disassembly line. The third item ensures that task j,
is executed after disassembly task j; is executed.

Constraints (23) and (24) ensure that the disassembly se-
quence of the product can begin from other tasks. Constraints
(25) and (26) ensure that the assignment of disassembly tasks
causes no conflict among them. Constraints (27)-(35) indicate
the range of values of decision variables.

III. PROPOSED ALGORITHM

A. Discrete Battle Royale optimizer (DBRO)

BRO is a population-based metaheuristic optimization al-
gorithm proposed by Rahkar-Farshi. The fundamental concept
of BRO draws inspiration from the game PUBG. Exploration
is a crucial component in PUBG, as players need to search
for tools to aid survival while avoiding being eliminated
by opponents. In PUBG, a popular game mode is called
”deathmatch,” which aims to eliminate as many other players
as possible until a specified kill count or time limit is reached.
Typically, the battles in PUBG take place on specific maps
chosen by players [41]], [42]]. The game maps are treated as
optimization problem spaces within BRO. A game begins with
players parachuting from an airplane onto the map. Like many
other population-based optimization algorithms, the search
agents in BRO are randomly initialized within the search space
by using uniform random initialization. During the game, if
other soldiers eliminate a player, they respawn in a randomly
chosen battlefield area. The ultimate winner is the player with
the most kills. In BRO, soldiers and players both represent
individuals.

Algorithm 1 Discrete Battle Royale Optimization Algorithm

Input: maximum iterations Max, population size n
Output: the best solution X
1: Initialize the soldier population

2: Xgqm = the damage level of each soldier.

3: rgam = combat rate

4: Calculate the fitness of each soldier

5: while (iter<Max) do

6:  for each soldier do

7: Execute the search process to reach a new location

8: Generate random probability r

9: if r>r4am then

10: Execute combat process

11: Xdam=Xdam+1

12: else

13: Soldiers continue the search process to reach a new
location

14: end if

15: if x44m>Threshold then

16: execute soldier rebirth process

17: end if

18:  end for

19:  Update X and record the optimal objective value
20:  Decide whether to initialize the population

21: t=t+1

22: end while

23: return X

BRO is employed for solving continuous optimization prob-
lems. However, MRPWF represents a discrete optimization
issue. We propose DBRO to solve this problem because it
exhibits fast convergence speed and strong global optimiza-
tion capability. In DBRO, the initial population is randomly
distributed throughout the problem space. DBRO introduces a
combat rate, where the algorithm generates a random number
in each iteration. If the generated random number is greater
than the combat rate, the soldier engages in combat after
encountering another soldier and gets injured. Conversely, if
the random number is lower than the combat rate, the soldier
successfully avoids combat and continues searching. Each
soldier randomly moves to explore advantageous positions
and then attempts to inflict damage on his nearest soldiers.
Each soldier’s damage level has an initial value of zero.
Upon sustaining damage, the soldier’s damage level incre-
ments and immediately shifts his current position to search
for an advantageous location. If the injured soldier can inflict
damage on other soldiers in the next iteration, his damage
level resets to zero. Once a soldier’s damage level surpasses
the predetermined threshold, the soldier dies. Then, the soldier
is randomly respawned from the feasible problem space and
resets his damage level to zero. This process is iterated until an
acceptable solution or the maximum iteration count is reached.

We introduce a mutation strategy to prevent DBRO from
getting trapped in local optima. Specifically, if the optimal
objective value of the population hasn’t improved after a
certain number of iterations, the population is reinitialized.
DBRO is realized by Algorithm 1.
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B. Encoding and Decoding

Establishing a disassembly product information model is
the first step in researching MRPWF. Common models for
disassembly information include AND/OR graphs [43]], Petri
nets [44], [45]], priority graphs [46], and others. The product in
this paper adopts the Disassembly AND/OR Graph (DAOG)
to represent the precedence relationships among disassembly
tasks. Taking a simplified forklift [47] as an example, its
DAOG is shown in Fig. 4] where the indices of the subassem-
blies are denoted by integers within angle brackets, and each
disassembly task is represented by a directed edge linking the
subassemblies. It is noticeable that this product consists of 19
subassemblies and 18 disassembly tasks.

Effective encoding strategies are crucial for MRPWE. They
simplify the problem-solving process, optimize resource uti-
lization, and enhance production efficiency, thus improving
the sustainability and competitiveness of the remanufacturing
process. Based on the characteristics of MRPWE, we expect
the generated solution to correspond accurately to an allocation
plan during the actual allocation process. In this problem,
the selection of manufacturing factories, disassembly factories
along with their internal disassembly lines, the allocation of
workstations, and the sequence of disassembly tasks performed
on the workstations all affect the quality of the solution. In
order to solve the researched problem, we design a five-stage
encoding strategy o (o7, 02, 03, 04, 05) to represent the solu-
tions of MRPWE. o represents the sequence of disassembly
tasks. o» = (a, b) signifies the relationship between tasks and
disassembly factories, where a signifies a task in o, and b
represents a disassembly factory. o3 = (b, ¢) denotes the con-
nection between disassembly factories and disassembly lines,
where b stands for a disassembly factory, and c¢ represents
the type of disassembly line. Here, the value of ¢ being 1
indicates a linear disassembly line, and 2 signifies a U-shaped
disassembly line. o4 = (a,d) indicates the linkage between
tasks and workstations, where a corresponds to a task in o7,
and d denotes a workstation. o5 = (e, f) represents the rela-
tionship between subassemblies and manufacturing factories,
where e denotes subassembly and f signifies manufacturing
factory.

Taking forklift truck as products, the encoding scheme is
shown in Fig. [5] The disassembly task sequence for product
lis 1, 3, 6, 11, and 16, while for product 2, it is 2, 5, 9, 14.
Product 1 is assigned to disassembly factory 1, while product
2 is assigned to disassembly factory 2. Disassembly factory
1 employs a U-shaped disassembly line, while disassembly
factory 2 operates a linear disassembly line. Disassembly task
1 for product 1 is assigned to workstation 1 on the U-shaped
disassembly line, while tasks 3, 6, and 16 are assigned to
workstation 2. Task 11 is assigned to workstation 3. For
product 2, tasks 2 and 5 are assigned to workstation 1 on
the linear disassembly line, and tasks 9 and 14 are assigned to
workstation 3. The subassemblies 3, 13, 15, and 18 of product
1 are assigned to manufacturing factory 1, while subassemblies
4 and 6 are assigned to manufacturing factory 2. For product
2, subassemblies 13 and 19 are assigned to manufacturing
factory 1, while subassemblies 4, 6, and 10 are assigned to
manufacturing factory 2.

The algorithm first generates a disassembly sequence based
on the conflicts and precedence relationships among disas-
sembly tasks during the decoding process. Each task in the
disassembly sequence is in a pending allocation state. The
following steps are then carried out.

o Step 1: Assign the EOL products to the disassembly
factories.

» Step 2: Select the disassembly lines that factories activate
for EOL products.

« Step 3: Assign disassembly tasks to workstations in order.
If a disassembly task is assigned to a workstation and
exceeds its cycle constraint, open the next workstation
and assign the task to it for execution.

o Step 4: Generate subassembly sequences based on dis-
assembly and select manufacturing factories for each
subassembly.

Taking the forklift as an example, the specific assignment
process is shown in Fig.

‘ <7>3-6 |

[<8234 ] [ <0>2556 | ‘<10>4H<11>1755|

D)
8
‘ <1245 | [ <1376 || <14>3 s ‘ <6>2 | [ <1525 | [<16-1, 56‘

1
[<13>6 | [ <1724 H<10>4H<15>56 |[<s=3] \ <1745 |[ <185 | \< >34 | [ <136 | \ <19>15 \
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Fig. 4. The DAOG of a forklift truck.

Subassembly sequence | 3

Manufacturing factory | 1 2

Task sequence (071) | 1 ‘ 3 ‘ 6 ’ 11 ‘ 16 | 2 5 ‘ 9 ‘ 14 ‘
Disassembly factory ‘ 1 ‘ 1 ’ 1 ‘ 1 ‘ 1 2 ‘ 2 ‘ 2 ‘ 2 ‘
Disassembly line 2 ‘ 2 2 ‘ 2 ‘ 2 ‘ 1 ‘ 1 1 ‘ 1 ‘
Workstation ’ 1 ‘ 2 2 ’ 3 2 1 ’ 1 3 3
| |
|

| |
| |
| |
| |

Fig. 5. Example of encoding.

7r2|1|2‘6‘10‘12‘17'

Fig. 6. Process of combat.
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C. Population Initialize

A population typically consists of multiple soldiers. During
the population initialization, random-length disassembly task
sequences are generated based on the disassembly incidence
matrix. Then, the generated task sequences are transformed
into feasible sequences by considering conflicts and priority
relationships among the disassembly tasks. Each task in the
disassembly sequence remains unallocated at this stage. Subse-
quently, these task sequences are allocated to various factories
for disassembly. The initialization process is illustrated in
Algorithm 2.

o Step 3: Randomly generate a set of binary masks with
the same length as the disassembly sequences. Then, from
left to right, examine the values of the masks. A value
of 0 indicates that the disassembly task is taken from
and placed into 7.y, While a value of 1 indicates that
the task is taken from s, and placed into me,,. If the
obtained task already exists in m,.,,, we need to skip the
current task and retrieve the next task from sy and 7.

« Step 4: The newly generated 7,,.,, may not be a feasible
solution, so it needs to be adjusted to satisfy conflict and
priority constraints.

Algorithm 2 Initialize population

Input: population size n

Output: population P

1: while (i<n) do

2:  Generate random task sequence o7

3:  Adjust o to resolve conflict and precedence constraint

4:  Apply the allocation strategy to generate o», 03, 04
5.  Add o(o1,07,03,04) to P

6: i=i+1

7: end while

8: return P

D. Combat and Search

Search and combat are critical operations for soldiers to
achieve victory. During a search process, rgq;, determines
whether combat occurs. A random number is generated, and
if it is greater than r;4,,, the soldier engages in combat during
the search process. Otherwise, the soldier successfully evades
the combat and continues the search if the generated random
number is less than rg,,,. The combat process is shown in
Fig. [

« Step 1: Obtain the disassembly task sequences 71 and

for two soldiers.
o Step 2: Generate a new soldier 7,y,.

Disassembly factory 1
Product 1

QE @ OO

Workstation 1 Workstation 2 ! Workstation 3

[ J

Disassembly factory 2
I |
I |
‘ ‘ ﬂ
I I
| |
| |
| i
| i
ﬁ : ﬁ |
I |
! | Workstation 3

Workstation 1 Workstation 2
Product 2
B @O OO® I=>

<&

Algorithm 3 Search process

Input: o(oy,07,03,04)
Output: o (0';, oé, 0'3', a':‘)
1: Generate random probability m
. if m<0.2 then
Execute the sequential variation
. else if m<0.5 then
Execute the task variation
else if m<0.9 then
Execute the workstation variation
else
Execute the factory swap
end if
. return o

R A A o

_..—
- e

For soldier search, we design four actions to better search
for the optimal solution, namely sequential variation, task
variation, workstation variation, and factory swap. The soldier
search process is shown in Algorithm 3.

Sequential variation: As shown in Fig. [8] task 10 is ran-
domly selected. Based on the priority relationships between
tasks, we identify that task 10’s preceding task is task 2, and
its subsequent task is task 17. Therefore, we can insert task
10 at any position between task 2 and task 17.

Task variation: As shown in Fig. [0] task 7 is a randomly

@ Subassemblies obtained from product 1

@ Subassemblies obtained from product 2

Disassembly
Factories(K)

Manufacturing
Factories(M)

Fig. 7. Example of assignment.
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selected task, and we remove it along with its subsequent
tasks. Then, based on Fig. 4] we identify the subassemblies
obtained from completing task 7 and select for an alternative
disassembly strategy for these subassemblies, resulting in tasks
6, 12, and 21. Finally, we incorporate these disassembly tasks
into the original disassembly sequence.

Workstation variation: Randomly select a workstation, then
choose either the first or the last task of that workstation. If the
first task is selected, it is assigned to the previous workstation.
If the last task is selected, it is assigned to the next workstation.
As shown in Fig. [T0} workstation 3 is the randomly chosen
workstation and task 7 from that workstation is assigned to
workstation 2.

Factory swap: As shown in Fig. [TT] we randomly select the
disassembly factory to which two products belong and swap
them.

E. Rebirth process

In DBRO, if a soldier’s damage level exceeds a pre-set
threshold, the soldier dies and respawns randomly within the
feasible problem space, with their damage level reset to zero.
After respawning, the newly generated soldiers are combined
with the previous soldiers to form a new population. The
population is then re-ranked based on an individual’s fitness
and proceeds to the next iteration.

Preceding task Random task Subsequent task
Task sequence 1 2 5 7 13 | 16 | 17 | 23
Newsequence | | [ 2 [ 5 | 7 | 13 16 | 17 | 23

Fig. 8. Process of sequential variation.

Random task

Tasksequence | 1 | 2 | 5 | 7 | 10|13 | 16|17 | 23

New sequence 1 2 5 10 | 16

Additional tasks

Fig. 9. Process of task variation.

First task of workstation 3
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o[ (1] 17]2 ]

1 | 2 ‘ 5 7
= J
variationﬂ

Workstation number ‘ 1 U
v

Task sequence

Random workstation

Task sequence

ol [fwlo]e]olz
=7 55 9

Fig. 10. Process of workstation variation.

Workstation number ‘

Disassembly factory 1 2 3 '
EOL product | 1 I] ‘ 2 U ‘ 3 U 4 '
Random product variation Random@prodmt

"
v

1 | 2 3
EOL product ‘ 1 U ‘ 2 I] | 3 I] | 4 '

Fig. 11. Process of factory swap.

Disassembly factory

IV. EXPERIMENTAL STUDIES

A. Experimental Cases and Parameter Settings

To verify the model’s correctness and assess the proposed
algorithm’s efficiency, we employ the IBM CPLEX optimizer
to solve the experimental cases and obtain standard optimal so-
lutions. Simultaneously, we employ DBRO to solve the same-
sized instances and compare their experimental outcomes. The
computations are conducted on a computer equipped with
an Intel(R) Core(TM) i5-8300H (2.30GHz/16.00GB RAM)
processor.

To ensure the comprehensiveness of the experimental study,
in terms of the case study, we select four distinct product
types: forklift truck [47], rigid caster [48]], washing machine
[49], and radio [50]. These four product types are combined
to create various multi-product cases for testing. Table [II]
presents the scale information for the combined cases. Table|[III]
outlines the parameter settings for the disassembly factories.
Table [IV] provides detailed information about these products.
Taking the forklift truck as an example, it consists of 6
components, involves 18 disassembly tasks, and results in
19 subassemblies upon disassembly. The profit, transportation
cost, unit-time disassembly cost, disassembly time, and fatigue
growth parameter of subassemblies are all assumed to follow
a normal distribution.
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B. Performance Indicators

To compare the effectiveness of DBRO with five different
algorithms, we use four performance indicators: hypervolume
[51], epsilon [52], and inverted generational distance plus
(IGD+) [53] to compare the results of different algorithms.
The meanings of each indicator are as follows:

« Hypervolume-indicator: It evaluates the performance
of a solution set by measuring the volume of non-
dominated space occupied by the solution set. A larger
value indicates better performance of the solution set.

« Epsilon-indicator: It measures the distance between the
approximate Pareto front and the true Pareto front. A
smaller value indicates better overall algorithm perfor-
mance.

o IGD+-indicator: It measures how closely a solution
set approximates the true Pareto front, considering the
distribution of solutions within the solution set. It pro-
vides a more comprehensive assessment compared to the
traditional IGD indicator. A smaller value indicates that
the solution set is closer to the true Pareto front, indicating
a better solution set.

For each case, we perform 20 runs of DBRO and its peer
algorithms, calculating the average values of the indicators
above. Furthermore, we analyze the experimental results using
a t-test [46] with a confidence level of 0.05 and 38 degrees
of freedom. In the following experimental results, ”+” indi-
cates that DBRO is significantly superior to the compared
algorithms, ”-” indicates that DBRO is significantly inferior
to the compared algorithms, and ”~” signifies that DBRO is
equivalent to the compared algorithms.

C. Verification of Algorithm With Different Scales of Cases
To validate the superiority of DBRO, we select five al-
gorithms for experimental case testing: DBRO, CPA, MBO,
DOA, and FOA. We use four performance indicators to
analyze the experimental results. The population sizes for the
cases are set at 120, 180, and 240, respectively. We ensure
that all algorithms are tested on the same computing platform
to avoid biases caused by hardware or platform differences.
Additionally, we use the same initial parameters, population

TABLE II Case information.

Product Num.

Case ID B . . of
Forklift ~ Rigid Washmg Radio  tasks

truck caster  machine

1 1 0 0 0 18

2 0 1 0 0 32

3 1 1 1 0 63

4 1 1 1 1 93

5 2 0 1 2 109

6 2 1 2 2 154

TABLE III Disassembly factory parameter set.

Factory ID  c¢g clfw c,l\,]w
1 3 6~9 7~11
2 5 4~9 6~11
3 4 4~7 6~12
4 4 4~7 8~10

size, and maximum number of iterations for each algorithm
and case.

Table [V] provides the experimental results for the five
algorithms concerning the hypervolume-indicator. For case 1,
when the population size is 180, DBRO outperforms CPA,
DOA, and FOA regarding the hypervolume-indicator, which
is equivalent to MBO. The experimental results indicate that
the solution set generated by DBRO is more diverse, better
covering the Pareto front, and contains a greater number of
high-quality solutions.

TabldVI] provides the experimental results for the five algo-
rithms regarding the IGD+-indicator. For case 5, when the
population size is 120, DBRO outperforms the other four
algorithms regarding the IGD+-indicator. The experimental
results indicate that the solution set generated by DBRO is
closer to the true Pareto Front, demonstrating good distribution
and convergence characteristics.

TabldVTI| provides the experimental results for the five
algorithms regarding the epsilon-indicator. For case 4, when
the population size is 180, DBRO outperforms the other four
algorithms regarding the epsilon-indicator. The experimental
results indicate that the solution set generated by DBRO is
closer to the true Pareto Front, demonstrating higher quality,
diversity, and convergence.

Based on the experimental results shown in Tables IV-VI,
we conclude that while DBRO may not outperform other
algorithms in all cases, it provides competitive solutions in
most situations. Furthermore, as the case scale increases, the
performance of DBRO gradually improves, indicating its high
scalability. However, it’s important to note that due to the
inherent randomness of the algorithm, its performance may
be constrained when dealing with small-scale cases. As large-
scale cases are more common in MRPWE, this makes DBRO
more practical. Fig. 12-14 depict the Pareto fronts for case 1,
case 3, and case 6, with a population size of 240. By observing
the Pareto front, we can see that DBRO outperforms other
algorithms significantly. Specifically, DBRO excels in pursuing
the objectives of maximizing profit and minimizing fatigue.
It not only ensures high profits but also effectively reduces
fatigue, demonstrating outstanding performance. Furthermore,
taking Case 4 as an example, when the population size is 120,
Fig. [T5] compares the running times of the five algorithms.
It can be observed that DBRO has a faster running time
compared to MBO and FOA. In conclusion, DBRO is a better
approach for solving MRPWEF.

V. CONCLUSION

The optimization of the multi-factory remanufacturing pro-
cess is of significant importance for improving resource uti-
lization efficiency, reducing environmental impact, and en-
hancing supply chain collaboration. In this work, building
upon MRPOP, we consider the influence of multi-skilled work-
ers and worker fatigue and, for the first time, introduce and
address MRPWF. Additionally, we establish a mixed-integer
programming model to maximize profit and minimize fatigue
index to formulate this problem. To tackle this problem, we
propose DBRO, in which we devise a novel encoding structure
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Fig. 15. CPU runtime for the five algorithms in Case 4.

to represent solutions. Additionally, four soldier search meth-
ods are designed to more effectively search for the optimal
solution to prevent falling into local optima. To validate the
effectiveness and superiority of the algorithm, we compare
the experimental results of DBRO with those of four other
intelligent optimization algorithms. Using the hypervolume-
indicator, epsilon-indicator, and IGD+-indicator to analyze the
experimental results, we demonstrate that DBRO offers higher
efficiency in solving this problem.
Our future plans include:

disassembly postures, etc.

2) Improving DBRO and designing better algorithms
to handle complex optimization problems.

3) We will also explore other intelligent optimization al-
gorithms or reinforcement learning and apply them to

1) Incorporating more real-world factors, such as worker solving similar problems.

TABLE IV Product parameter set.

Num. of  Num. of Num of T d
Product parts task subassembly Vmpi Ckmpi Ckpj tkwpj Opj
Forklift truck 6 18 19 NG00, 6) N(20,3) N(7,2) N(7,2) N(0.15, 0.05)
Rigid caster 9 32 25 N(100,5) N(10,2) NG, 1) N@ 1 N1, 0.03)
Washing machine 6 13 15 N(230,4) N(15,2) N(6,1) N(5, 1) N(0.12, 0.04)
Radio 10 30 29 N(150,4) N(10,3) N(6,1) N@, 1) N(0.1, 0.03)
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TABLE V Comparison of five algorithms via hypervolume-indicator

Case ID P DBRO CPA MBO DOA FOA
mean  variance mean  variance t-test ~mean  variance t-test ~mean  variance t-test ~mean  variance  t-test
120 03236 0.0233  0.1991  0.0322 + 0.2476  0.0241 ~ 0.1569  0.0251 + 0.2603  0.0223 ~
1 180 0.3087  0.0271 0.2006  0.0474 + 0.2483  0.0376 ~ 0.1091 0.0141 + 0.2113  0.0127 +
240 0.1466  0.0006 0.1110  0.0045 + 0.1268  0.0011 + 0.1075  0.0014 + 0.1234  0.0002 +
120 0.1887  0.0060  0.0499  0.0049 + 0.0469  0.0063 + 0.0944  0.0083 + 0.0043  0.0001 +
2 180 0.1185 0.0071  0.0361  0.0129 + 0.0036  0.0001 + 0.0941  0.0048 ~ 0.0033  0.0002 +
240 0.0164 0.0016  0.0023  0.0001 ~ 0.0023  0.0001 ~ 0.0093  0.0008 ~ 0.0030  0.0001 ~
120 0.1302  0.0187  0.0424  0.0027 + 0.0629  0.0034 + 0.0791  0.0072 ~ 0.0619  0.0116 +
3 180  0.3221 0.0122  0.2118  0.0079 + 0.2560  0.0174 + 0.2267  0.0049 + 0.1981 0.0089 +
240 0.3448  0.0066  0.3337  0.0126 ~ 0.2505  0.0115 + 0.2851  0.0066 + 0.2017  0.0072 +
120 0.1167  0.0097  0.0707  0.0122 ~ 0.0574  0.0075 + 0.0341  0.0035 + 0.0835 0.0119 ~
4 180 0.4797 0.0134  0.4433  0.0120 ~ 04163  0.0119 + 0.3649  0.0119 + 0.4404  0.0065 ~
240 0.4536  0.0091 0.4414 0.0153 ~ 0.4106  0.0119 ~ 0.3856  0.0108 + 0.3795  0.0108 +
120 03088  0.0119  0.2311 0.0121 + 0.2345  0.0175 + 0.2229  0.0212 + 0.2244  0.0157 +
5 180 0.3339  0.0258  0.2288  0.0068 + 0.2667  0.0232 ~ 0.2452  0.0152 + 0.3313  0.0175 ~
240 0.1428  0.0217  0.1079  0.0215 ~ 0.0821  0.0082 ~ 0.0764  0.0195 ~ 0.0601  0.0068 +
120 04203 0.0121  0.3627  0.0137 ~ 0.3836  0.0215 ~ 0.3301  0.0316 + 0.3206  0.0117 +
6 180 0.3755 0.0109 0.3057 0.0179 + 0.3266  0.0328 ~ 0.3874  0.0228 ~ 0.3310  0.0161 ~
240 0.3236  0.0217 0.2490  0.0125 ~ 0.3284  0.0233 ~ 0.3230  0.0355 ~ 0.2668  0.0164 ~
TABLE VI Comparison of five algorithms via IGD+-indicator
Case ID p DBRO. CI"A M]'SO DQA FQA
mean variance mean variance  t-test mean variance  t-test mean variance  t-test mean variance  t-test
120 04229  0.0172  0.6545 0.1567 + 0.5705  0.1084 + 0.5400  0.0173 + 0.5470  0.1033 ~
1 180 0.4424  0.0214 09095  0.4225 + 0.6206  0.1919 + 0.6917  0.1206 + 0.6291  0.1450 +
240 03124  0.0063  0.4334  0.0368 + 0.4628  0.0027 + 0.4272  0.0295 + 0.3946  0.0049 +
120 0.4286  0.0117  0.7275  0.0668 + 0.8777  0.1180 + 0.6643  0.1002 + 0.9758  0.1073 +
2 180 0.4313  0.0063 1.1770  0.1711 + 14123  0.1563 + 0.6320  0.1236 + 1.2132  0.1397 +
240 04379 0.0148 0.8236  0.0377 + 0.9238  0.0277 + 0.4878  0.0204 ~ 0.8293  0.0235 +
120 0.3894  0.0271 0.6213  0.0147 + 0.5566  0.0133 + 0.5145  0.0283 + 0.6206  0.0286 +
3 180 0.2497 0.0094 03972  0.0121 + 0.3416  0.0132 + 0.3787  0.0057 + 0.4004  0.0113 +
240 0.2319  0.0038  0.2580  0.0094 ~ 0.3121  0.0088 + 0.2899  0.0041 + 0.3509  0.0068 +
120 0.5296  0.0298  0.7504  0.1180 + 0.7531 0.1369 + 0.9077  0.2390 + 0.7011 0.0976 +
4 180 0.2043  0.0057 0.2376  0.0062 ~ 0.2522  0.0088 + 0.3222  0.0056 + 0.2191  0.0038 ~
240 0.2402  0.0042  0.2882  0.0091 + 0.3115  0.0080 + 0.3496  0.0069 + 0.3336  0.0071 +
120  0.2818  0.0042 0.3891  0.0098 + 0.3786  0.0105 + 0.3908  0.0158 + 0.3690  0.0103 +
5 180 0.2978  0.0135  0.3804  0.0049 + 0.3668  0.0183 + 0.4238  0.0104 + 0.3119  0.0117 ~
240 0.5393  0.0545 0.6462  0.0798 ~ 0.5910  0.0487 ~ 0.7909  0.1290 + 0.7024  0.7024 +
120 0.2890  0.0062  0.3477 0.0114 + 0.3198  0.0112 ~ 0.3638  0.0195 + 0.3736  0.0094 +
6 180 0.2798  0.0053  0.3473  0.0136 + 0.3355  0.0275 ~ 0.2786  0.0145 ~ 0.3153  0.0088 ~
240 03764  0.0241 0.4467 0.0110 ~ 0.3685  0.0218 ~ 0.4028  0.0343 ~ 0.4464  0.0180 ~
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