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Enhanced Gold Rush Optimizer for Feature
Selection: Application in Software Fault Prediction

Datasets
Yaxi Qing, and Jian Zhao

Abstract—The Gold Rush Optimizer (GRO) is a popular
metaheuristic algorithm proposed recently. However, it has slow
convergence, low accuracy, and easily gets stuck in local optima
when solving real problems. To address these issues, we propose
an enhanced version called the Enhanced Gold Rush Optimizer
(EGRO). Our algorithm achieves better performance through
four new mechanisms. First, a Sinusoidal Bridging Mechanism
uses the sine function’s periodic waves to boost global search.
Second, we create a new partner selection strategy based on
Euclidean distance. Third, an adaptive Levy flight strategy
dynamically adjusts the search step size and direction to improve
population diversity. Fourth, a Metal Detector Strategy combines
gradient feedback of the ”M” factor to accurately avoid local
optima traps. To test EGRO, we build a two-level evaluation
system. Tests on the CEC2022 benchmark sets show that EGRO
performs best in convergence accuracy and stability for uncon-
strained optimization. Meanwhile, in the feature selection task
on 16 software fault prediction datasets, EGRO outperforms
mainstream optimization algorithms by improving classification
accuracy by 0.1%-4.5%. It achieves the minimum number of
features in 87.5% of the datasets and obtains the optimal fitness
value in 93.75% of the datasets. Experiments prove that EGRO
has strong scalability and practical value.

Key Words—Gold rush optimizer, Sinusoidal bridging mecha-
nism, Feature selection, Software fault prediction.

I. INTRODUCTION

DATA is growing very fast in both types and amounts. This
makes it hard to find and check useful information from

big data. Researchers working in data mining are actively try-
ing to improve methods for sorting data [1, 2] and developing
machine learning techniques [3, 4]. Many data mining tasks
deal with huge datasets containing many features, but often
only some features really matter. The extra features become
like noise, unimportant, or repeated. Choosing a smaller set
of features that truly represents the whole dataset greatly
affects how well machine learning works. This impact both the
accuracy of predictions and how much time the calculations
take . [5].

Feature selection plays a vital role in data mining and
machine learning. By eliminating redundant and irrelevant fea-
tures, FS identifies optimal feature subsets that improve model
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performance while reducing computational overhead [6]. This
dual benefit of enhanced efficiency and reduced resource
consumption makes FS indispensable across diverse fields –
from bioinformatics [7] to computer vision applications like
image search [8] and recognition [9], as well as text analysis
tasks including mining [10], classification [11], and image
categorization [12].There are three common ways to do feature
selection: filter-based FS, wrapper-based FS, and embedded
FS [13]. Filter-based FS uses stats to give each feature in a
dataset a score. It does not look at how features depend on
each other. Then it ranks features by their scores, removes the
low-ranked ones, and keeps the high-ranked ones [14]. Well-
known filter-based FS methods are document frequency [15],
information gain [16], and chi-square [17]. Wrapper-based FS
uses search methods like particle swarm optimization (PSO)
[18] or genetic algorithms (GA) [19] to test different groups
of features. After the search, it uses classifiers like decision
trees [20], naive Bayes [21], or k-nearest neighbors [22] to
check how good the selected features are. Embedded FS mixes
parts of both filter-based and wrapper-based methods. It puts
search methods inside a classifier so that the classifier can pick
features that make it accurate [23]

Feature selection problems belong to the NP-hard category,
meaning finding optimal solutions quickly is extremely chal-
lenging [24]. This makes optimization methods crucial for
discovering satisfactory solutions efficiently. Recently, meta-
heuristic algorithms have gotten a lot of attention in the
research world for solving optimization problems.

We choose GRO [25] as one of the new meta-heuristic
algorithms to talk about the benefits of using meta-heuristic
algorithms for FS problems. GRO is a new algorithm inspired
by human behavior. It is easy to use, has a simple structure,
and needs few parameters to control. It also has good stability
and finds solutions well. This study aims to leverage these
advantages for optimal feature selection. Many optimization
problems, including FS, involve binary search spaces and de-
cision variables. Furthermore, the group update mechanism in
GRO can alter the types of individuals within the population.

The proposed GRO has many benefits for solving feature
selection optimization problems. First, it can adapt to differ-
ent types and levels of difficulty in feature selection. This
flexibility is particularly valuable, as many FS problems are
inherently complex and benefit from an approach requiring
minimal parameter tuning, a key characteristic of GRO. Sec-
ond, GRO has a simple design. It finds overall solutions
quickly and accurately, offering high convergence rates for
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tough FS problems. The goal of this work is to create a
wrapper-based method using an improved GRO algorithm to
solve many failure prediction and classification problems. This
depends on picking the most important and useful attributes
from specific datasets. These are needed to build the best
classification models with high performance, fewer features,
and shorter run times.

To achieve the goal of this study, the following four contri-
butions were made:

1) Introduced a Sinusoidal bridging mechanism to optimize
𝑙𝑒, improving the global exploration ability of GRO and
increasing the algorithm’s convergence speed.

2) Introduced a new partner selection strategy based on
Euclidean distance. It expands the algorithm’s search
space and helps avoid getting trapped in local optima
too early.

3) Introduced a gold panning factor 𝑀 to more reasonably
distribute the different action stages of the gold panners,
speeding up algorithm convergence and improving ac-
curacy.

4) Introduced a metal detector strategy combined with the
𝑀 factor to help gold panners more effectively locate
gold mines, speeding up the algorithm’s convergence.

The rest of this paper is structured as follows: Section II
introduces the basic GRO algorithm. Section III provides a
detailed explanation of the proposed method. Sections IV to
V describe the experimental setup, the obtained results, and
the comprehensive analysis. Finally, the paper concludes with
research conclusions and future recommendations.

II. GOLD RUSH OPTIMIZER

A. GRO Mathematical Model and Algorithm

The Gold Rush Optimization (GRO) algorithm is proposed
by Kamran Zolf in 2023. It is a metaheuristic optimization
algorithm inspired by the Gold Rush activities. It simulates
the migration, cooperation, and gold panning behaviors of
prospectors during the Gold Rush. This helps achieve an
optimized search process.The migration process of the gold
panners is represented by equations (1) and (2).

−→
𝐷1 =

−→
𝐶1 ∗
−−−−→
𝑋∗ (𝑡) −

−−−−→
𝑋𝑡 (𝑡) (1)

−−−−−→
𝑋𝑛𝑒𝑤𝑡 (𝑡 + 1) =

−−−−→
𝑋𝑡 (𝑡) + 𝐴1 ∗

−→
𝐷1 (2)

where, 𝑋∗ (𝑡) and 𝑋𝑖 (𝑡) represent the positions of the best gold
mine and the i-th gold panner, respectively. is the current
iteration number, and 𝑋𝑛𝑒𝑤𝑖 (𝑡 + 1) is the new position of the
gold panner. 𝐴1 and 𝐶1 are vector coefficients calculated using
equations (3) and (4).

𝐴1 = 1 + 𝑙1 ∗
(
−→𝑟1 −

1
2

)
(3)

−→
𝐶1 = 2−→𝑟2 (4)

𝑟1 and 𝑟2 are random vectors with values in the range [0,1].
𝑙1 and 𝑙2 are the convergence components defined by equation
(5). For values greater than 1, they decrease non-linearly. Here,

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 is the maximum number of iterations, and iter is the
current iteration number.

𝑙𝑒 =

(
maxiter − iter
maxiter − 1

)𝑒 (
2 − 1

maxiter

)
+ 1

maxiter
(5)

where, 𝑒 is equal to 1 or 2.The formula for the gold mining
stage is:

−→
𝐷2 =

−→
𝑋𝑙 (𝑡) −

−→
𝑋𝑟 (𝑡) (6)

−−−−−→
𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1) = −→𝑋𝑟 (𝑡) + 𝐴2 ∗

−→
𝐷2 (7)

where, 𝑋𝑟 (𝑡) represents the position of the randomly selected
gold panner. 𝐴2 is calculated using equation (8).

𝐴2 = 2𝑙2 ®𝑟1 − 𝑙2 (8)

Gold panning is done through teamwork. This stage is
represented by equations (9) and (10). In these equations,
𝑋𝑔1 (𝑡) and 𝑋𝑔2 (𝑡) are two randomly selected gold panners.
𝐷3 is the cooperation vector.

−−−−−→
𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1) = −→𝑋𝑙 (𝑡) + ®𝑟1 ∗

−→
𝐷3 (9)

−→
𝐷3 =

−−→
𝑋𝑔2 (𝑡) −

−−→
𝑋𝑔1 (𝑡) (10)

Gold prospectors continuously evaluate their position. A key
parameter in their decision is to get more gold. To decide
whether to stay at the current position or move to a new one,
they compare the two positions using a fitness function. If
the value of the objective function improves, the prospector
updates their position. Otherwise, they stay at the previous
position. This position is modeled by equation (11) in the
minimization problem:
−→
𝑋𝑙 (𝑡 + 1) = −−−−−→𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1) if 𝑓 (−−−−−→𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1)) < 𝑓 (−→𝑋𝑙 (𝑡))

(11)

III. PROPOSED ENHANCEMENT METHODS OF GRO

This section presents four novel improvement strategies.

A. Sinusoidal bridging mechanism

We see positive effects from using alternative bridging
mechanisms in our methods. In these methods, experiments
are done to change the known linear mechanisms. Inspired
by the successful use of different math and chaotic functions,
we suggest changes to the known GRO linear mechanism.This
mechanism is governed by 𝑙1 and 𝑙2. The proposed changes
are given by the following equations.

𝑙1 = 2 ∗
(
1 −

(
sin 𝜃

2

)2
)

(12)

𝑙2 = 2 ∗
(
1 −

(
cos 𝜃

2

)2
)

(13)

𝜃 =
𝜋 ∗ iter
maxiter

(14)
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B. Partner selection strategy
In the original GRO, gold panners start by randomly choos-

ing two partners. This means new solutions are created without
considering the structure of the partners. Many classic algo-
rithms build new solutions by using the structural relationships
of the current generation. Thus, how to fully use the structural
information of partners to achieve better cooperation is a key
question.

The collaboration process on the left side of Figure 1 shows
the defects when partners are randomly selected. When miners
choose partners closer to the optimal solution on the same
side, the updated position area of the miners appears as a
square region within the blue area, rather than being closer
to the optimal solution. In this case, many poor solutions
are generated, resulting in slow convergence speed and low
accuracy. Therefore, a new method is proposed to overcome
this limitation.

First, the number of partners is controlled by 𝑃𝑝 = 0.5,
and the population is divided into gold panners and part-
ners based on fitness values. The Euclidean distance be-
tween two individuals, 𝑋𝑖 = (𝑥 (𝑖,1) , 𝑥 (𝑖,2) , 𝑥 (𝑖,3) , . . . , 𝑥 (𝑖,𝐷) )
and 𝑋 𝑗 = (𝑥 ( 𝑗 ,1) , 𝑥 ( 𝑗 ,2) , 𝑥 ( 𝑗 ,3) , . . . , 𝑥 ( 𝑗 ,𝐷) ), is calculated using
equation(15) to measure their similarity. To avoid high similar-
ity in the population, partners with the smallest similarity are
selected for cooperation. Once a partner is chosen, it cannot
be reused.

𝑑𝑖 𝑗 =

(
𝐷∑︁
𝑘=1
(𝑥𝑖,𝑘 − 𝑥 𝑗 ,𝑘)2

)1/2

(15)

As shown in the collaboration process on the right side of
Figure 1, the farthest partners are selected for cooperation.
This allows the gold mine to appear in the blue square area
containing the optimal solution. As a result, gold panners can
quickly converge near the optimal solution instead of searching
blindly.

C. Adaptive Lévy Flight Strategy
Lévy flight is a random walk model. The chance of taking a

step follows a heavy-tailed distribution. It mixes long and short
walks. This speeds up how fast the algorithm finds solutions.
To make the algorithm more accurate, we use a weighted Lévy
flight.

The calculation of the Lévy flight distribution function is as
follows:

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ∗ 𝜇 ∗ 𝜎
|𝜈 |

1
𝜂

(16)

where, 𝑠 is a fixed constant of 0.01, and 𝜂 is a fixed constant
of 1.5. 𝜇 and 𝜈 are random numbers in the interval [0,1]. The
formula for 𝜎 is as follows:

𝜎 =

©­­­«
Γ(1 + 𝜂) ∗ sin

( 𝜋𝜂
2

)
Γ

(
1+𝜂

2

)
∗ 𝜂 ∗ 2

(
𝜂−1

2

) ª®®®¬
1
𝜂

(17)

where, Γ represents the gamma function, and the value of 𝜂 is
1.This paper uses Lévy flight to optimize the migration vector
𝐷4 −→

𝐷4 =
−→
𝐶1 ∗
−→
𝑋∗ (𝑡) ∗ 𝐿𝑒𝑣𝑦 − −→𝑋𝑙 (𝑡) (18)

D. Metal detector strategy

In the GRO algorithm, the three strategies of migration, gold
panning, and cooperation are evenly shared based on a random
number m. This paper designs a gold panning factor 𝑀 based
on the BMI index of adult males, the average walking speed of
adults, and the distance between gold panners and gold mines,
as shown in the following formula:

𝑀 =
1
𝑅
∗

(
1 + iter

maxiter

)
(19)

the expression for 𝑅 is as follows:

𝑅 =
𝐵 ∗𝑉2

𝐿
(20)

where 𝐵 is the BMI index of adult men, a random number
between [18.5, 23.9]. 𝑉 is the average walking speed of adults,
set at 4.5 km/h. 𝐿 is the distance between the prospector and
the gold mine, a random number between [0, 100].The design
of the gold panning factor is inspired by the impact of adult
men’s physical fitness and movement speed on their ability to
successfully reach the target gold mine during the gold rush.
Since there are no clear historical records for these data, we
use the BMI index of adult men as a quantitative measure of
physical fitness and the average walking speed of adults as
the movement speed of the gold panners. Theoretically, the
distance between the gold panner and the gold mine will not
exceed 100 km. 𝑀 is a random number between [0, 0.4].

In the original algorithm, the three strategies were op-
timized with equal one-third probabilities, which did not
effectively balance exploration and exploitation. Therefore,
EGRO achieves better equilibrium between exploration and
exploitation phases by utilizing parameter 𝑀: When 𝑀 > 0.2,
it is the collaboration phase (exploitation phase), and at all
other times, it corresponds to the migration and mining phase
(exploration phase).

In the gold panning process, a gold panning factor helps bal-
ance the algorithm’s exploitation and exploration phases. The
migration and cooperation steps are the exploration phases,
while the gold mining step is the exploitation phase. The
migration step performs medium exploration using random
moves to search widely. The cooperation step performs strong
exploration using long Lévy flight jumps. To better balance
exploitation and exploration in EGRO, we update positions
using this equation:


−−−−−→
𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1) = −→𝑋𝑟 (𝑡) + 𝐴2 ∗ sin(𝑟1) ∗

−→
𝐷2 , 𝑀 > 0.2

−−−−−→
𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1) = −→𝑋∗ (𝑡) + 𝐴1 ∗ cos(𝑟2) ∗

−→
𝐷3 , 𝑀 > 0.05

−−−−−→
𝑋𝑛𝑒𝑤𝑙 (𝑡 + 1) = −→𝑋𝑙 (𝑡) + 𝐴1 ∗

−→
𝐷4 , else

(21)
where, 𝑟1 and 𝑟2 are random numbers between [0, 1].

As shown in Figure 1, the original algorithm (left) randomly
selects two collaborators for cooperative strategies. While this
ensures randomness, it may limit the current individual’s abil-
ity to efficiently locate the gold mine. To tackle this issue, we
propose an enhanced partner selection method: First, we divide
the population into two equal groups. From the first group, we
randomly select a collaborator 𝑋𝑔1, then choose the individual
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Fig. 1. Partner selection strategy.

Algorithm 1 Enhanced Gold Rush Optimization

Input: population size 𝑁 , maximum iterations maxiter
Output: the best solution 𝑋∗

Begin
Initialize the gold prospector’s population 𝑋𝑖 , 𝑖 = 1, 2, . . . , 𝑁

Initialize the gold prospector’s new population Xnew𝑖 = 𝑋𝑖 ,
𝑖 = 1, 2, . . . , 𝑁
Initialize 𝑡, 𝑙1, 𝑙2, 𝑀
𝑋∗ is the best search agent
while 𝑡 ⩽ maxiter do

for 𝑖 = 1 to 𝑁 do
Calculate the fitness of Xnew𝑖

Update 𝑋𝑖 according to equation(21)
Update 𝑋∗

end for
Update 𝑙1, 𝑙2 by equations(12)(13)
Calculate 𝑀 by equation(19)
for 𝑖 = 1 to 𝑁 do

Update Xnew𝑖 using migration, mining or collaboration
end for
𝑡 ← 𝑡 + 1

end while
return 𝑋∗

End

in the second group that has the farthest Euclidean distance
from 𝑋𝑔1 as the second collaborator 𝑋𝑔2. This strategic pairing
significantly expands the search scope while accelerating gold
mine localization.

IV. EGRO QUANTITATIVE ANALYSIS
In this section, we compare EGRO, GRO, and seven other

popular algorithms on the CEC2022 test suites to verify the
performance of EGRO.

A. Algorithm parameter settings

In this section, to verify the effectiveness of EGRO, we
compare it with eight advanced algorithms on the CEC 2022
test suite. The compared algorithms include: Fata Morgana
Algorithm(FATA) [26], Differential Evolution Algorithm(DE)
[27], Grey Wolf Optimizer (GWO) [28], Whale Optimiza-
tion Algorithm(WOA)[29], Catch Fish Optimization Algo-
rithm(CFOA) [30], Black-winged Kite Algorithm(BKA) [31],

Secretary Bird Optimization Algorithm(SBOA) [32] and GRO
[25].

The overall size for all algorithms is set to 30, with 500
iterations. Each algorithm runs independently 30 times, and
the relevant results are recorded. For each test function and
its corresponding dimension, the best result is highlighted in
bold.

B. CEC 2022 EXPERIMENTAL RESULTS
To further verify the scalability of EGRO, in this section, we

test it using the CEC2022 benchmark functions and compare it
with eight other popular algorithms. The CEC2022 benchmark
functions include unimodal, multimodal, hybrid, and compos-
ite functions.

The statistical results of EGRO, GRO, and 7 other com-
parison algorithms on the 10-dimensional and 20-dimensional
CEC2022 benchmark functions are shown in Tables I and II .

As shown in Tables I and II, in the 10-dimensional search
space, EGRO achieves a good balance between global explo-
ration and local exploitation. Compared to traditional meta-
heuristic algorithms such as FATA, DE, and GWO, EGRO
demonstrates superior convergence accuracy, more stable con-
vergence, and better performance in terms of mean and optimal
value indicators for most test functions. This clearly shows
that EGRO, with its unique search mechanisms, effectively
avoids local optima traps and accurately identifies the global
optimum when handling low-dimensional complex multimodal
optimization problems. When the optimization space expands
to a 20-dimensional high-dimensional scenario, the algorithm’s
complexity and search difficulty increase sharply. Neverthe-
less, EGRO still shows strong environmental adaptability
and effectively maintains search efficiency and accuracy in
high-dimensional spaces. This suggests that EGRO can more
efficiently explore potential solution areas in high-dimensional
solution spaces while balancing the exploration-exploitation
process.

In general, compared to other metaheuristic algorithms,
EGRO’s advantages in the CEC 2022 10-dimensional and 20-
dimensional test scenarios can be systematically summarized
into three points: First, its exceptional convergence accuracy:
In multi-function test tasks, the mean and optimal value
indicators consistently exhibit characteristics that closely ap-
proach the theoretical optimal solution, highlighting a sig-
nificant advantage in solution quality.Second, its ability to
generalize across dimensions: During the testing process from
low-dimensional to high-dimensional spaces, the algorithm’s
performance degradation is significantly smaller compared to
the comparison algorithms, validating its strong generaliza-
tion capability in complex optimization tasks across varying
dimensions.Third, the efficiency of its search mechanism: By
improving the population evolution logic and information uti-
lization mode of the metaheuristic algorithm, EGRO achieves
an efficient collaboration between global exploration and lo-
cal refinement search, providing a more competitive solving
paradigm for complex dimensional optimization problems,
showcasing its potential advantages and application value in
handling multi-dimensional complex optimization tasks within
the metaheuristic algorithm system.
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TABLE I CEC 2022 Experimental results (Dim=10)

ID Index FATA DE GWO WOA CFOA BKA SBOA GRO EGRO

F1
Mean 2.18E+03 8.31E+03 2.84E+03 2.69E+04 5.39E+02 7.35E+02 5.24E+02 4.17E+02 3.00E+02
Std 1.76E+03 2.89E+03 2.56E+03 1.02E+04 2.06E-02 1.16E+03 2.34E+02 1.80E+02 2.60E+03
Best 4.14E+02 4.85E+03 3.73E+02 8.88E+03 3.13E+02 3.03E+02 3.49E+02 3.17E+02 3.00E+02

F2
Mean 4.25E+02 4.11E+02 4.14E+02 4.52E+02 4.03E+02 4.30E+02 4.17E+02 4.02E+02 4.04E+02
Std 2.87E+01 8.62E+01 1.40E+01 6.85E+01 3.46E+01 4.07E+01 2.58E+01 2.89E+01 3.96E+00
Best 4.00E+02 4.01E+02 4.03E+02 4.01E+02 4.00E+02 4.00E+02 4.00E+02 4.00E+02 4.00E+02

F3
Mean 6.22E+02 6.00E+02 6.01E+02 6.44E+02 6.02E+02 6.31E+02 6.00E+02 6.01E+02 6.00E+02
Std 7.85E+00 6.41E-04 1.55E+00 1.61E+01 1.67E+01 1.23E+01 2.33E-01 9.17E-01 9.20E-03
Best 6.08E+02 6.00E+02 6.00E+02 6.12E+02 6.00E+02 6.08E+02 6.00E+02 6.00E+02 6.00E+02

F4
Mean 8.28E+02 8.24E+02 8.16E+02 8.40E+02 8.11E+02 8.20E+02 8.14E+02 8.12E+02 8.12E+02
Std 5.96E+00 5.03E+00 7.15E+00 1.93E+01 3.37E+00 5.64E+00 4.36E+00 5.21E+00 4.19E+00
Best 8.12E+02 8.14E+02 8.05E+02 8.14E+02 8.05E+02 8.10E+02 8.05E+02 8.04E+02 8.05E+02

F5
Mean 1.18E+03 9.37E+02 9.12E+02 1.65E+03 9.01E+02 1.14E+03 9.02E+02 9.04E+02 9.00E+02
Std 2.32E+02 2.49E+01 1.79E+01 4.43E+02 9.26E-01 1.38E+02 7.01E+00 7.92E+00 5.29E-01
Best 9.03E+02 9.07E+02 9.00E+02 1.04E+03 9.00E+02 9.11E+02 9.00E+02 9.00E+02 9.00E+02

F6
Mean 6.01E+03 8.61E+03 6.02E+03 5.83E+03 3.02E+03 3.21E+03 4.09E+03 2.73E+03 3.22E+03
Std 4.45E+03 5.72E+03 2.31E+03 3.66E+03 1.13E+03 1.62E+03 2.20E+03 1.01E+03 1.48E+03
Best 1.99E+03 2.31E+03 2.38E+03 2.02E+03 1.87E+03 1.89E+03 2.00E+03 1.84E+03 1.85E+03

F7
Mean 2.04E+03 2.01E+03 2.03E+03 2.08E+03 2.03E+03 2.05E+03 2.02E+03 2.02E+03 2.01E+03
Std 1.95E+01 3.37E+00 1.14E+01 2.82E+01 6.53E+00 2.25E+01 7.69E+00 8.21E+00 9.77E+00
Best 2.01E+03 2.00E+03 2.01E+03 2.04E+03 2.01E+03 2.02E+03 2.00E+03 2.00E+03 2.00E+03

F8
Mean 2.33E+03 2.22E+03 2.23E+03 2.34E+03 2.22E+03 2.32E+03 2.22E+03 2.22E+03 2.22E+03
Std 4.47E+00 3.90E+00 2.35E+01 9.65E+00 5.65E+00 2.02E+00 5.25E+00 4.10E+00 7.96E+00
Best 2.21E+03 2.21E+03 2.21E+03 2.23E+03 2.21E+03 2.21E+03 2.20E+03 2.20E+03 2.20E+03

F9
Mean 2.55E+03 2.53E+03 2.57E+03 2.61E+03 2.53E+03 2.58E+03 2.53E+03 2.53E+03 2.53E+03
Std 2.16E+01 1.68E+00 3.24E+01 5.01E+01 8.89E+01 3.35E+01 6.15E+01 2.50E-01 1.41E-11
Best 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03

F10
Mean 2.58E+03 2.49E+03 2.62E+03 2.61E+03 2.53E+03 2.63E+03 2.56E+03 2.55E+03 2.51E+03
Std 6.48E+01 1.86E+01 2.07E+02 1.72E+02 4.92E+01 1.64E+02 5.99E+01 5.64E+01 2.80E+01
Best 2.50E+03 2.43E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03

F11
Mean 2.78E+03 2.74E+03 2.91E+03 2.86E+03 2.64E+03 2.80E+03 2.71E+03 2.66E+03 2.61E+03
Std 1.61E+02 2.85E+01 1.72E+02 1.69E+02 8.86E+01 2.80E+02 1.74E+02 9.78E+01 3.82E+01
Best 2.61E+03 2.64E+03 2.72E+03 2.67E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03

F12
Mean 2.88E+03 2.87E+03 2.87E+03 2.90E+03 2.86E+03 2.87E+03 2.86E+03 2.87E+03 2.87E+03
Std 1.46E+01 7.72E-01 1.10E+01 3.41E+01 1.49E+00 1.45E+01 1.03E+00 2.55E+00 1.41E+00
Best 2.86E+03 2.86E+03 2.86E+03 2.87E+03 2.86E+03 2.86E+03 2.86E+03 2.86E+03 2.86E+03

Fig. 2. CEC2022 test function comparison curve (Dim=20).

As shown in the convergence curve in Figure 2, EGRO
demonstrates both fast convergence and high accuracy. During
the optimization process, EGRO performs well, especially in
the early and middle stages, where it quickly identifies better
solutions. In the later stages, it maintains a high solution
quality.

V. APPLICATION OF EGRO

To evaluate EGRO’s performance in solving real-world
optimization problems, further testing is conducted using a
feature selection problem based on software fault prediction
datasets. EGRO is compared with seven other algorithms.

In this section, the effectiveness, robustness, and stability of
the proposed algorithm are studied using 16 feature selection
datasets related to software fault prediction. The characteristics
of the datasets are described in section 5.1. The parameter
settings for the proposed algorithm are detailed in section
5.2. Section 5.3 explains the evaluation methods used to
assess the performance of the proposed algorithm. Section 5.4
demonstrates the impact of the suggested improvements on the
GRO algorithm’s performance and compares the performance
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TABLE II CEC 2022 Experimental results (Dim=20)

ID Index FATA DE GWO WOA CFOA BKA SBOA GRO EGRO

F1
Mean 1.34E+04 3.51E+04 1.58E+04 3.58E+04 1.30E+04 1.18E+04 6.44E+03 1.28E+04 2.77E+03
Std 4.45E+03 6.62E+03 5.29E+03 1.15E+04 5.91E+03 6.39E+03 2.62E+03 3.49E+03 2.14E+03
Best 5.76E+03 2.63E+04 5.90E+03 2.05E+04 3.86E+03 3.42E+03 2.11E+03 7.23E+03 6.18E+02

F2
Mean 5.51E+02 4.58E+02 4.99E+02 6.43E+02 5.04E+02 6.87E+02 4.67E+02 5.00E+02 4.56E+02
Std 5.58E+01 6.21E+00 4.58E+01 7.48E+01 3.55E+01 2.62E+02 2.13E+01 3.03E+01 1.13E+01
Best 4.60E+02 4.49E+02 4.52E+02 4.87E+02 4.54E+02 4.84E+02 4.35E+02 4.69E+02 4.45E+02

F3
Mean 6.56E+02 6.00E+02 6.08E+02 6.71E+02 6.16E+02 6.55E+02 6.01E+02 6.09E+02 6.01E+02
Std 8.18E+00 1.09E-02 4.64E+00 1.53E+01 7.03E+00 8.93E+00 1.63E+00 3.62E+00 6.41E-01
Best 6.36E+02 6.00E+02 6.02E+02 6.45E+02 6.06E+02 6.34E+02 6.00E+02 6.03E+02 6.00E+02

F4
Mean 9.06E+02 9.12E+02 8.59E+02 9.40E+02 8.62E+02 8.87E+02 8.46E+02 8.44E+02 8.45E+02
Std 8.43E+00 1.11E+01 2.35E+01 2.72E+01 1.29E+01 1.67E+01 1.28E+01 1.03E+01 3.41E+01
Best 8.94E+02 8.95E+02 8.26E+02 9.00E+02 8.38E+02 8.54E+02 8.26E+02 8.25E+02 8.18E+02

F5
Mean 2.69E+03 1.74E+03 1.30E+03 4.33E+03 1.10E+03 2.30E+03 9.98E+02 1.07E+03 9.33E+02
Std 1.81E+02 2.88E+02 2.74E+02 1.90E+03 1.47E+02 4.21E+02 1.15E+02 1.69E+02 2.86E+01
Best 2.14E+03 1.17E+03 9.72E+02 2.05E+03 9.24E+02 1.39E+03 9.05E+02 9.33E+02 9.07E+02

F6
Mean 3.32E+05 2.10E+06 5.71E+06 8.68E+06 3.52E+03 2.27E+06 1.21E+04 2.64E+04 8.21E+03
Std 3.72E+05 1.13E+06 1.26E+07 1.80E+07 1.57E+03 1.23E+07 1.94E+04 3.43E+04 5.64E+03
Best 6.86E+04 3.37E+05 5.84E+03 2.24E+05 1.94E+03 3.34E+03 2.08E+03 2.05E+03 1.88E+03

F7
Mean 2.16E+03 2.05E+03 2.11E+03 2.33E+03 2.09E+03 2.12E+03 2.05E+03 2.06E+03 2.04E+03
Std 2.62E+01 1.10E+01 5.81E+01 5.74E+01 1.57E+01 2.97E+01 2.33E+01 2.07E+01 1.44E+01
Best 2.12E+03 2.04E+03 2.04E+03 2.13E+03 2.07E+03 2.07E+03 2.03E+03 2.03E+03 2.02E+03

F8
Mean 2.28E+03 2.23E+03 2.25E+03 2.33E+03 2.23E+03 2.29E+03 2.23E+03 2.23E+03 2.23E+03
Std 5.96E+01 1.56E+00 4.63E+01 8.26E+01 6.31E+01 8.24E+01 4.52E+01 2.16E+00 5.22E+00
Best 2.23E+03 2.23E+03 2.23E+03 2.24E+03 2.23E+03 2.23E+03 2.22E+03 2.22E+03 2.22E+03

F9
Mean 2.54E+03 2.48E+03 2.53E+03 2.59E+03 2.50E+03 2.61E+03 2.48E+03 2.49E+03 2.48E+03
Std 2.21E+01 5.06E-01 2.35E+01 5.01E+01 1.22E+01 1.70E+02 5.49E-01 4.12E+00 2.85E-02
Best 2.50E+03 2.48E+03 2.49E+03 2.51E+03 2.49E+03 2.49E+03 2.48E+03 2.48E+03 2.48E+03

F10
Mean 3.78E+03 2.53E+03 3.51E+03 5.08E+03 2.72E+03 4.14E+03 2.70E+03 2.77E+03 2.51E+03
Std 1.13E+03 5.54E+01 7.95E+02 1.17E+03 6.26E+02 1.11E+03 3.14E+02 4.95E+02 3.95E+01
Best 2.53E+03 2.49E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03

F11
Mean 3.21E+03 2.95E+03 3.62E+03 3.89E+03 3.06E+03 4.82E+03 2.95E+03 3.15E+03 2.93E+03
Std 1.82E+02 6.85E+01 3.94E+02 5.55E+02 1.20E+02 1.18E+03 1.75E+02 1.60E+02 4.49E+01
Best 2.97E+03 2.90E+03 2.99E+03 3.41E+03 2.73E+03 3.45E+03 2.60E+03 2.83E+03 2.90E+03

F12
Mean 3.17E+03 2.96E+03 2.98E+03 3.08E+03 2.98E+03 3.07E+03 2.95E+03 2.98E+03 2.95E+03
Std 7.61E+01 5.40E+00 2.60E+01 7.54E+01 2.09E+01 8.89E+01 9.44E+01 1.60E+01 9.14E+01
Best 3.05E+03 2.95E+03 2.95E+03 2.99E+03 2.95E+03 2.96E+03 2.94E+03 2.96E+03 2.94E+03

of the proposed algorithm with 7 established feature selection
methods.

A. Datasets

This section presents the characteristics of 16 real-world
datasets that are directly related to the software fault prediction
problem. These datasets are commonly used in the literature
to evaluate the effectiveness of feature selection methods.
The datasets are from two public repositories: PROMISE and
OpenML.

Table III shows the main characteristics of the datasets
used in this study. It includes the common name, number of
classes (# Classes), actual number of features (# Features),
number of faults (# Faults). Seven of the datasets (KC2, KC3,
CM1, MW1, PC1, PC2, and PC5) were established by the Na-
tional Aeronautics and Space Administration (NASA). These
datasets include data related to satellites, ground stations,
and other simulated data. The following datasets (Ar1, Ar3,
Ar4, Ar5, and Ar6) were sampled from embedded software
developed in C language. All datasets have two classes, with
the number of features ranging from 21 to 39. The number of

faults in these datasets ranges from 8 to 1759, reflected in fault
percentages ranging from 2.15% to 32.29%. As previously
mentioned, the integration of the k-NN classifier in the pro-
posed EGRO version significantly enhances its effectiveness
in handling these datasets, a claim well-supported by prior
literature in the feature selection (FS) field.

For the experimental problem, each dataset is divided into
a training set and a test set. 80% of the instances in each
dataset are randomly selected for training, and the remaining
instances are used for testing.

B. Parameters Configuration

Table IV shows the parameter settings for the proposed
EGRO algorithm. The algorithm uses the same parameter
settings to ensure all algorithms run under the same conditions.
To study the robustness and stability of these algorithms, each
algorithm is run 20 times independently with different random
seeds. The proposed algorithm and other comparison algo-
rithms are designed using MATLAB R2023a in a Windows
10 64-bit environment.
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TABLE III Characteristics of the sixteen SFP dataset

# Dataset Dimension #Classes #Features #Faults

1 Ar1 121 2 29 8
2 Ar3 63 2 29 8
3 Ar4 107 2 29 20
4 Ar5 36 2 29 8
5 Ar6 101 2 29 15
6 CM1 498 2 22 49
7 JM1 7782 2 22 1759
8 KC1 2109 2 22 325
9 KC2 522 2 21 107
10 KC3 194 2 39 43
11 MC2 125 2 39 52
12 MW1 403 2 37 31
13 PC1 1109 2 37 76
14 PC2 5589 2 36 23
15 PC3 1563 2 38 140
16 PC4 1458 2 38 178

TABLE IV Settings of the parameters of the proposed EGRO

Parameter Value

Population size 20
Number of iterations 100
Runs 20

C. Evaluation Measures

The proposed EGRO-based algorithm and the other compar-
ison algorithms are evaluated using appropriate metrics. These
evaluation measures are summarized as follows:

Accuracy: It measures the success rate of the classifier by
calculating the percentage of true classes across all categories,
as shown in equation (22).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (22)

where, TP (True Positive) represents the ratio of positive
classes predicted by the classification model.TN (True Neg-
ative) reflects the ratio of negative classes predicted by the
classification model. FP (False Positive) represents the ratio
of negative classes incorrectly predicted as positive. FN (False
Negative) reflects the ratio of positive classes incorrectly
predicted as negative.

Fitness function: It measures the quality of a solution
calculated by the objective function (see equation (23)). It
is important to note that the search process of the feature
selection algorithm is guided toward high-quality solutions by
this measure.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗ |𝑅 ||𝑁 | + 𝛽 ∗ 𝐸𝑅𝑅 (23)

Selected features: It measures the ability of the proposed
algorithm to select the minimum number of features that
represent the entire dataset.

D. Binary-EGRO (BEGRO) for Feature Selection

In feature selection problems, the search space is binary,
meaning the problem can be represented as a set of 0-1 bits.
Therefore, EGRO is adjusted to work with this structure.

Transfer functions can be used to adapt optimization algo-
rithms from continuous to binary domains without changing

Fig. 3. S-shaped transfer function.

their core structure. The S-shaped transformation function
shown in Figure 3 is represented by the Sigmoid equation
(24), and its curve presents a typical smooth S shape. This
function maps the continuous position values of individuals in
the EGRO algorithm to the range [0, 1], and then discretizes
the elements of the position vector into binary values through
a random threshold mechanism.

𝑆(𝑥) = 1
1 + exp−𝑥

(24)

𝑇ℎ𝑟𝑒𝑠 = 0.5 + 0.3 ∗ iter
maxiter

(25)

By plugging the result of equations (24)(25) into equation
(26), the i-th element of the gold panner’s position vector is
converted to 0 or 1.

𝑥(𝑡 + 1) =
{

1 , 𝑟 < 𝑆(𝑥(𝑡))
0 , 𝑟 ≥ 𝑆(𝑥(𝑡))

(26)

where, r is a random number between 0 and 1. r plays a key
role in updating the value of 𝑥𝑡 based on the 𝑆(𝑥(𝑡)) value
returned by equation (26).

As shown in Figure 4, it is divided into two parts, with
arrows indicating the dynamic transition from the initial stage
to the final stage. The feature selection mechanism uses the
Sigmoid function to implement probability-binary conversion,
with a dynamic adjustment strategy that linearly increases the
threshold from 0.5 to 0.8 during the optimization process.
The left side of Figure 4 represents the initial stage: lenient
selection, where about 50% of features are retained to avoid
the removal of important features due to random noise. The
right side represents the final stage: strict selection, where only
less than 20% of features are retained. This method enhances
EGRO’s ability to balance exploration in the feature space and
discrimination power.

The effectiveness of the Binary-Enhanced Gold Rush Opti-
mizer (BEGRO) is evaluated in this section using 16 datasets.
BEGRO is compared with seven binary optimization algo-
rithms: Binary Particle Swarm Optimization (BPSO) [33],
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Fig. 4. Dynamic threshold feature selection mechanism.

Binary Grey Wolf Optimization (BGWO), [28] Binary Tan-
gent Goose Optimization Algorithm (BGOA), [34] Binary
Fata Morgana Optimization Algorithm (BFATA), [26] Binary
Harris Hawks Optimization Algorithm (BHHO), [35] Binary
Butterfly Optimization Algorithm (BBOA), [36] and Binary
Gold Rush Optimization Algorithm (BGRO) [25].Each algo-
rithm’s parameters are set according to their original literature.

In this work, parameters such as the number of iterations
(set to 500), population size (set to 30), and a KNN classifier
utilizing Euclidean distance (K = 5) are used. To ensure a fair
comparison, each method is executed 20 times. This process
allows for a comprehensive evaluation of how EGRO performs
relative to these other established optimization techniques on
various datasets related to software fault prediction.

This section explains the effectiveness of the modifications
proposed for the GRO algorithm’s performance. For feature
selection (FS) problems, three metrics are used for evalua-
tion: classification accuracy, fitness value, and the number of
selected features.

In Table V, we present a comparison of the classification
accuracy of BEGRO and other optimization algorithms across
16 datasets. The results in Table V show that the proposed BE-
GRO achieves higher classification accuracy than all other op-
timization algorithms. BEGRO outperforms other algorithms
on 81.25% of the datasets, demonstrating its effectiveness.

In Table VI, the feature selection results of each method are
presented as the best fitness values from 20 runs. It is clear
from Table VI that the proposed BEGRO method surpasses
other methods in terms of average fitness value across 8
datasets. This indicates that the proposed optimizer achieves
the best performance in 50.00% of the datasets and obtains
very good results in most of the datasets.

From Table VII, BEGRO performs well in selecting the
fewest features. It achieves the smallest feature count in 14
datasets. This shows that BEGRO can effectively minimize the
feature set and reduce the number of features without hurting

performance.
In summary, the BEGRO algorithm not only significantly re-

duces the number of features and lowers the model complexity
in the feature selection problem of software fault prediction
datasets, but also significantly improves the accuracy of the
prediction model. It provides an efficient and reliable feature
selection solution for software fault prediction, with important
theoretical significance and practical application value.

VI. CONCLUSION AND FUTURE WORKS

To address the issues of imbalance between exploration
and exploitation, slow convergence speed, susceptibility to
local optima, and low convergence accuracy in the Gold Rush
Optimizer (GRO), this paper proposes an improved version
called the Enhanced Gold Rush Optimizer (EGRO).

First, a Sinusoidal bridging mechanism is introduced to
optimize 𝑙𝑒, which improves the global exploration ability
of GRO and accelerates the algorithm’s convergence speed.
Next, an adaptive Lévy flight hybrid dynamic tangent flight
strategy is introduced to enhance exploration performance and
population diversity. Furthermore, a partner selection strategy
based on Euclidean distance is introduced, which significantly
expands the search range. An adaptive Lévy flight strategy is
added to further enhance exploration and improve population
diversity. Finally, a Metal Detector Strategy combined with the
𝑀 factor helps gold panners locate gold mines more efficiently
and effectively prevents the algorithm from getting stuck in
local optima.

To evaluate the performance of EGRO, experiments are
conducted using CEC2022 benchmark functions. The results
show that EGRO achieves excellent optimization outcomes on
CEC2022 test functions, outperforming the original GRO and
other comparison algorithms. Additionally, to verify the algo-
rithm’s capability in solving real-world problems, it is applied
to the Software Fault Prediction problem. The experimental
results show that compared to other benchmark algorithms,
EGRO achieves higher classification accuracy on 81.25% of
the datasets and obtains better fitness values on 93.75% of
the datasets, confirming its effectiveness. Additionally, EGRO
selects the minimum number of features in 87.5% of the
datasets. This highlights its high optimization capability in
addressing real-world practical issues.

In summary, the effectiveness of the four introduced im-
provement strategies is clearly demonstrated, significantly
enhancing the optimization performance of the original al-
gorithm. These strategies collaboratively improve global ex-
ploration, partner selection, population diversity, and the bal-
ance between exploration and exploitation. Moreover, EGRO
proves to be highly robust, performing effectively across both
unconstrained and constrained problems. Its adaptability is
evident in various problem types, showcasing its versatility
and broad applicability in solving complex optimization tasks.
This makes EGRO a powerful tool for a wide range of real-
world optimization challenges.

In future research, several areas need continuous innovation
to further optimize EGRO

1) Algorithm Fusion and Optimization: Combining EGRO
with other metaheuristic algorithms for fusion and col-
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TABLE V Comparison of the basic and proposed BEGRO methods based on the average percent of the classification accuracy

Dataset BPSO BGWO BGOA BFATA BHHO BBOA BGRO BEGRO

Ar1 95.833 95.833 95.833 95.833 95.833 95.833 95.833 95.833
Ar3 100 100 100 100 100 100 100 100
Ar4 100 100 100 100 100 100 100 100
Ar5 100 100 100 100 100 100 100 100
Ar6 90.000 91.500 93.000 92.500 90.000 92.500 90.000 94.500
CM1 92.424 92.525 93.030 93.131 93.030 93.030 92.525 93.333
JM1 77.488 77.992 78.405 78.488 77.647 77.628 77.250 78.401
KC1 80.950 81.520 83.111 83.325 81.045 81.567 80.499 83.325
KC2 86.635 86.538 88.269 88.077 87.308 88.942 86.634 89.808
KC3 88.351 90.219 90.879 90.439 89.890 90.989 88.791 91.978
MC2 76.875 79.686 82.187 81.875 79.063 80.938 78.125 80.938
MW1 97.125 97.377 97.500 97.500 97.000 97.250 96.750 97.500
PC1 95.475 96.516 96.832 96.742 96.063 96.518 95.701 96.968
PC2 99.642 99.642 99.642 99.642 99.642 99.642 99.642 99.642
PC3 91.250 92.083 92.276 92.211 91.218 91.731 90.801 92.404
PC4 89.691 90.034 90.447 90.515 89.519 89.863 89.416 90.309

Rank 6 4 2 3 5 8 7 1

TABLE VI Comparison of the basic and proposed BEGRO method based on the best of the fitness value.

Dataset BPSO BGWO BGOA BFATA BHHO BBOA BGRO BEGRO

Ar1 0.045 0.044 0.043 0.044 0.043 0.042 0.044 0.041
Ar3 0.0036 0.0021 0.0024 0.0027 0.0010 0.0016 0.0035 0.0003
Ar4 0.0036 0.0023 0.0029 0.0025 0.0020 0.0022 0.0035 0.0003
Ar5 0.0034 0.0020 0.0023 0.0027 0.0010 0.0019 0.0032 0.0003
Ar6 0.1025 0.0863 0.0725 0.0774 0.1000 0.0758 0.1023 0.0552
CM1 0.0789 0.0768 0.0717 0.0711 0.0725 0.0707 0.0782 0.0671
JM1 0.2289 0.2237 0.2197 0.2184 0.2274 0.2267 0.2307 0.2182
KC1 0.1933 0.1872 0.1724 0.1701 0.1922 0.1867 0.1985 0.1689
KC2 0.1363 0.1355 0.1197 0.1223 0.1275 0.1108 0.1361 0.1027
KC3 0.1195 0.1008 0.0947 0.0995 0.1013 0.0911 0.1149 0.0805
MC2 0.2334 0.2046 0.1809 0.1841 0.2105 0.1909 0.2209 0.1895
MW1 0.0329 0.0296 0.0284 0.0285 0.0322 0.0309 0.0363 0.0255
PC1 0.0488 0.0384 0.0355 0.0360 0.4187 0.0375 0.0471 0.0325
PC2 0.0079 0.0069 0.0071 0.0073 0.0051 0.0064 0.0783 0.0047
PC3 0.0914 0.0838 0.0814 0.0824 0.0894 0.0845 0.0962 0.0778
PC4 0.1068 0.1036 0.0992 0.0990 0.1078 0.1029 0.1097 0.0981

Rank 7 6 2 3 5 4 8 1

TABLE VII Comparison of the basic and proposed BEGRO method based on the average number of features.

Dataset BPSO BGWO BGOA BFATA BHHO BBOA BGRO BEGRO

Ar1 11.1 7.7 7.2 7.7 3.7 2.7 10.2 1.0
Ar3 10.2 5.9 6.8 7.7 2.8 4.7 9.9 1.0
Ar4 10.2 6.6 7.0 7.1 5.8 6.2 9.9 1.0
Ar5 9.6 5.7 6.7 7.6 2.9 5.4 9.1 1.0
Ar6 10.0 6.1 9.2 8.9 2.9 4.4 9.4 2.0
CM1 7.8 5.5 5.4 6.1 6.9 3.3 8.4 2.2
JM1 12.1 11.8 11.9 10.9 12.4 10.6 11.0 8.8
KC1 9.5 8.5 10.5 10.2 9.2 8.5 10.9 7.8
KC2 8.0 4.5 7.2 8.5 3.7 2.7 7.6 3.6
KC3 16.1 15.2 16.9 18.5 4.9 7.3 15.2 4.2
MC2 17.0 13.4 17.3 17.7 12.1 8.6 16.6 3.0
MW1 16.3 13.1 13.3 13.7 9.0 13.0 14.9 3.0
PC1 8.0 7.9 8.4 7.5 5.8 6.1 9.1 4.9
PC2 12.2 8.7 9.2 10.1 2.3 6.9 11.9 1.0
PC3 17.4 19.6 18.0 19.2 9.0 9.6 18.5 9.4
PC4 17.1 17.9 16.6 18.5 14.7 9.2 17.7 7.8

Rank 8 4 7 5 3 2 6 1
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laborative optimization fully utilizes the strengths of
each algorithm. This further improves the accuracy and
robustness of problem-solving.

2) Adaptability and Self-learning: By integrating machine
learning and deep learning, EGRO’s adaptability and
self-learning abilities are enhanced, allowing it to adjust
to different problems and environments. This enables
EGRO to learn from data, autonomously optimize its
parameters, and improve solution effectiveness.

3) Multi-objective and Constrained Optimization: As real-
world problems become more complex, multi-objective
and constrained optimization problems become increas-
ingly important. Future work focuses more on EGRO’s
ability to solve multi-objective problems, providing
more comprehensive solutions for optimization prob-
lems.

4) Expanding Application Areas: Metaheuristic algorithms
are designed to solve real-world problems, and the aim is
to broaden the application scope of EGRO to enhance its
versatility. This includes tasks such as hyperparameter
tuning in neural networks, image classification, circuit
fault diagnosis, wireless sensor network optimization,
and 3D point cloud reconstruction.
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