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Disassembly Line Balancing Problem Considering
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Abstract—Disassembly lines break down scrapped products to
recover valuable components for recycling and remanufacturing.
Their productivity depends on several key factors: workstation
operating costs, task priority, worker skill levels, and learning
efficiency. This study considers the learning effect of disassembly
and assembly workers. It pursues two objectives simultaneously:
1) maximizing the disassembly profit and 2) maximizing the
learning outcomes of the workers. A bi-objective mixed integer
programming model for the disassembly and assembly balancing
problem is established to explore the optimal solution. A multi-
objective fruit fly optimization algorithm is proposed, which
can better handle multi-objective optimization problems by
simulating the foraging behavior of fruit flies and finding a set
of high-quality solutions that balance multiple objectives. The
algorithm is compared with other multi-objective optimization
algorithms. The experimental results show that the algorithm
has outperform advantages.

Keywords:Disassembly line balancing, multi-skilled workers,
learning effect, Muti-objective fruit fly optimization algorithm,
simulation

I. INTRODUCTION

Both recycling—recovering materials from discarded prod-
ucts—and reusing—extending product life by using items
again—are effective strategies for conserving resources and
reducing environmental impact [1]. The efficiency of the
disassembly line plays a crucial part in achieving this goal, as
it helps ensure the completeness of the product life cycle [2].
With automation integration, disassembly lines are character-
ized by high work efficiency. However, this efficiency level
does not guarantee maximum output from the disassembly
line. Factors such as productivity, operating time, and disas-
sembly order can significantly impact the output. Therefore,
the disassembly line balancing problem (DLBP) is introduced
in this context. DLBP requires assigning disassembly tasks
to an ordered sequence of workstations with a disassembly
precedence relationship while optimizing the effectiveness of
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specific measures [3]. DLBP was first proposed by Gungor and
Gupta [4], [5] in 2001 and then described as a multi-objective
combinatorial problem. Laili et al. [6] classified the existing
types of disassembly line problems, including the layout of
disassembly lines and disassembly objectives. In addition,
they summarized the modeling of disassembly lines, including
some standard variables and disassembly constraints in the
model. In recent years, research on DLBP has become more
in-depth. For example, Qin et al. [7] established a parallel
disassembly equilibrium model considering the employment
of government welfare workers and verified the correctness
of the proposed model through the exact solution results of
CPLEX. Guo et al. [8] established a mathematical model for
the U-shaped layout disassembly line balance problem after
considering many factors such as the disassembly performance
of the human body, the fatigue level of the workers at the
workstation, the disassembly profit, and the task precedence
relationship. A multi-objective evolutionary algorithm was
used to solve the proposed problem.

In the manufacturing industry, distribution planning is one
of the key factors influencing the production efficiency of the
disassembly line. DLBP has long been a hot research topic, yet
only some studies explore the impact of multi-skilled workers
on this issue. A disassembly line is a system comprising mul-
tiple workstations where products are sequentially processed
by workers [9]. Flexibility in production systems is crucial in
today’s world. Multi-skilled workers enhance this flexibility by
serving as a buffer to various demands [10]. Typically, these
workers have several skills at different proficiency levels [11].
These proficiency levels affect the time required to process
products [12]. Turan et al.[13] studied the multi-skilled labour
planning problem, improved the efficiency of the maintenance
network by optimizing the labour capacity of the repair shop
and achieving labour heterogeneity through cross-training, and
finally established a resilient maintenance service network
for high-value assets. Guo et al. [14] studied the balancing
problem of multi-product parallel disassembly lines, consid-
ering multi-skilled workers, and established a multi-objective
mathematical model of parallel disassembly lines. Wang et
al. [15] combined linear disassembly lines and U-shaped
disassembly lines and considered multi-skilled workers, and
established a hybrid disassembly line balancing problem with
profit and carbon emissions as the goals. Efficiently allocating
multi-skilled workers enhances efficiency and reduces costs.
Therefore, integrating multi-skilled workers into the DLBP
aims to increase system resilience and efficiency by optimizing
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the assignment of tasks and workers to workstations.
During the disassembly line production process, workers’

learning efficient significantly impacts the efficiency of the
entire disassembly line. From previous research on worker
learning effects, Salameh used human learning effects in a
production inventory model [16]. Erfan et al. [17] proposed a
bi-objective mixed integer linear programming model consid-
ering the learning effect for allocating and scheduling disaster
rescue units [18]. Mor B et al. [19] applied learning effects to
flow shop scheduling problems. Azzouz A et al. [20]proposed
and discussed a classification scheme for different scheduling
models under learning effects. Currently, there are limited
studies in this area. Workers often exhibit significant efficiency
advantages when performing skilled tasks. They can improve
their efficiency through accumulated experience during tasks,
reducing the required working time and minimizing losses in
disassembly activities. By considering the learning abilities
of multi-skilled workers and the characteristics of the tasks,
whole operations can be finely tuned to enhance the efficiency
and quality of the entire disassembly line.

Based on the above reasons, this work studies DLBP
considering worker learning effects, using an improved multi-
objective fruit fly optimization algorithm (MOFOA) to max-
imize profits and enhance workers’ learning outcomes. In
recent years, the advancement of swarm intelligence optimiza-
tion algorithms has led to their growing application in DLBP.
These algorithms mimic various social animal behaviours
observed in different groups, leveraging the interactions and
collaborations between individual members to optimize perfor-
mance. Guo et al. applied the randomized hybrid discrete grey
wolf optimizer to the multi-objective decomposition sorting,
and DLBP [21]. Luan et al. [22] used the improved whale
algorithm to solve the flexible job shop scheduling problem.
Fu et al. [23] et al. developed a multi-objective discrete
fruit fly optimization algorithm combined with a stochastic
simulation method to solve a stochastic multi-objective inte-
grated disassembly-reprocessing-reassembly scheduling prob-
lem. This work applies a Pareto algorithm and can obtain a
set of Pareto solutions [24]. Compared with the improved fruit
fly optimization algorithms in existing literature, the proposed
MOFOA also has some notable features. For example, com-
pared with the single-objective fruit fly optimization algorithm
in Qin et al. [25], the proposed algorithm introduces two
main improvements: (1) This algorithm enables fruit flies to
pursue multiple optimization goals simultaneously; (2) It use
the Pareto solution set in each iteration as the position with the
highest fitness. During the olfactory search process, each fruit
fly individual in the population begins a random search from
a random solution in the current generation’s Pareto solution
set.

Compared with the existing studies, this work makes the
following two contributions.

1) This study considers the impact of learning effects on
disassembly efficiency in practical factory worker training on
the traditional disassembly line model. It solves the problem
of task allocation and disassembly line balance for multi-
skilled workers by quantifying and tracking the development
of workers’ experience and skills. Building on this foundation,

we develop a multi-objective mixed integer programming
model to maximize post-task profits and enhance the collective
skill levels of the workforce.

2) An improved multi-objective fruit fly optimization algo-
rithm is proposed. The algorithm uses a three-stage encoding
square to represent the solution and designs an enhanced visual
search method, taking the Pareto solution set in each iteration
as the position with the highest fitness. Products of different
specifications are combined into different multi-product cases
for experiments and compared with other intelligent optimiza-
tion algorithms. The results verify that the MOFOA algorithm
performs better in solving the proposed DBLP problem than
other multi-objective optimization algorithms.

The remaining sections are organized as follows: Section
II describes the DLBP-MLW problem and establishes its
mathematical model. Section III discusses the specific process
of the improved multi-objective fruit fly optimization algo-
rithm. Section IV details numerical experiments on several
disassembly cases. Section V summarizes this paper.

II. PROBLEM STATEMENT AND FORMULATION

A. Problem Description
DLBP-MLW, a sub-problem of DLBP, focuses on how the

learning abilities of multi-skilled workers impact the efficiency
of the disassembly line. This problem inherently incorporates
the fundamental constraints of DLBP. In DLBP, tasks and
workers are rationally assigned to workstations, adhering to
task precedence and workstation cycle time constraints [26].
The primary objective of DLBP-MLW is to maximize the
profitability of disassembly operations and enhance workers’
overall skill levels upon task completion.

In DLBP, profit is calculated as the total value of disassem-
bled parts minus disassembly costs. These costs encompass the
workstation’s start-up, fixed, and time-related costs incurred
during the disassembly tasks.

In real-world scenarios, workers’ efficiency is not constant
and is typically influenced by the learning effect [27]. The
learning effect refers to workers improving their skill level and
efficiency by continuously accumulating experience during
disassembly tasks [9]. Learning effects can be analyzed and
interpreted in both short-term and long-term perspectives.
From a long-term perspective, learning effects are usually rep-
resented by various learning curve models, including S-curve
models, 2-parameter exponential models, and 3-parameter
hyperbolic models, among others [28]. These models depict
the relationship between experience accumulation and skill
improvement, helping predict employee job performance. Al-
though learning curves can accurately simulate the learning
effect process, nonlinear models are often complex and chal-
lenging to solve. From a short-term perspective, the learning
effect is viewed as a threshold phenomenon in which workers’
productivity increases significantly once their experience ac-
cumulation reaches a certain threshold. This improvement can
be modelled by introducing appropriate threshold parameters.

In this work, a simple model has been developed by
establishing a systematic framework that associates the level of
worker experience with corresponding skill levels [29], [30].
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By quantifying and tracking the progression of experience
and skill acquisition, we can gain valuable insights into how
workers’ productivity and performance evolve. This model
offers a practical and insightful approach to understanding
the dynamics of learning and skill development in the context
of worker performance. Each worker is assigned a different
initial experience for each skill, with the relationship between
skill level and skill experience represented as a piecewise
function. The relationship between task execution time and
work experience is shown in Fig. 1, in which 𝐸𝑝𝑠 represents
the worker p ’s experience of skill s, and 𝑇 𝑙

𝑖𝑟
represents the

execution time of task i of product l at skill level r. To
linearize the learning curve, we divide skills into different
levels according to experience, and tasks require different
times at different levels. Taking the execution time 𝑇 𝑙

𝑖𝑚
under

level m in the figure as an example, 𝐸 𝑙𝑏
𝑠 (𝑚) and 𝐸𝑢𝑏

𝑠 (𝑚) represent
the lower and upper bounds of the experience interval of skill s
at level m, respectively. The determination of 𝑇 𝑙

𝑖𝑚
value comes

from the following formula:

(𝐸𝑢𝑏
𝑠 (𝑚) − 𝐸

𝑙𝑏
𝑠 (𝑚) ) ∗ 𝑇

𝑙
𝑖𝑚 =

∫ 𝐸𝑢𝑏
𝑠 (𝑚)

𝐸𝑙𝑏
𝑠 (𝑚)

𝑓 (𝑒)𝑑𝑒 (1)

Fig. 1. Relationship between required time and skill level.

Assuming each task requires a specific skill, workers pos-
sess varying initial experience levels for each skill. Workers
can gain corresponding skill experience through their learning
ability while executing tasks. The amount of experience they
gain is influenced by the duration of task execution. As work-
ers continuously gain experience, their skill levels improve.
By effectively assigning tasks to workers, the time cost of
executing tasks can be reduced.

Regarding workstation and worker settings, each worksta-
tion is assigned only one worker. Each workstation has a cycle
time limit, meaning that disassembly tasks must be completed
within the specified cycle time at each workstation.

DLBP-MLW aims to obtain the maximum profit from
product disassembly by considering both the disassembly time
costs and the employment costs of workers. Ultimately, we
must assign the most suitable workers to each workstation
based on skill requirements.
B. Disassembly AND/OR Graph (DAOG)

Disassembly process can be rigorously specified with fromal
methods[31][32]. In this paper, we illustrate the disassembly
process using a disassembly AND/OR graph (DAOG), which

provides detailed information about disassembly tasks, sub-
assemblies, and the resulting disassembly parts. The AND/OR
graph clearly shows the order of disassembly tasks and in-
tuitively reveals the dependencies between subassemblies and
parts. In the AND/OR graph, rectangles represent part numbers
and information. Specifically, the part number is displayed as
a number inside the angle brackets, and the details of the
parts inside the part are marked outside the angle brackets.
Each directed angle in the graph corresponds to a specific
disassembly task, the task identifier is marked inside the angle,
and the arrows intuitively depict the relationship between
subassemblies. The starting point of the arrow points to the
component that needs to be disassembled, and the direction of
the arrow indicates the component obtained after performing
the disassembly task. It should be noted that although there
may be multiple directed angles around the rectangle, only
one disassembly task can be performed on a component at a
time, which means the disassembly is performed according to
one directed angle each time. For example, after executing
task 4 on component 2, we get components 4 and 8. A
component can be torn down by executing different tasks.
However, these tasks conflict with each other. When one of
the tasks is executed, all other tasks are disabled. For example,
component 5 can be torn down by either task 6 or task 7. These
two tasks conflict with each other.

Fig. 2 shows an example of a treadmill consisting of 7 parts,
while Fig. 3 describes the disassembly AND/OR graph of
treadmill parts. DAOG requires different types of constraints,
including conflict relationships, priorities of tasks, and rela-
tionships between tasks and sub-components. Fig. 3 shows
that the disassembly process involves 18 sub-components,
seven parts, and 17 disassembly tasks. During the disassembly
process, task conflicts and precedence relationships must be
satisfied. For example, after executing task 6 on part 5, we
get parts 3 and 8. Parts can be disassembled by executing
different tasks; however, these tasks may conflict. When a task
is executed, all other tasks are disabled. For example, part 5
can be disassembled by task 6 or task 7, but these two tasks
conflict.

Fig. 2. Assembly diagram of a treadmill.

In order to correctly calculate the benefits of disassembly
components, we define two matrices to describe the rela-
tionship between tasks and components and the relationship
between tasks and skills.
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Fig. 3. The DAOG of a treadmill.

1) Subassembly-task association matrix
A subassembly-task association matrix 𝐷 = [𝑑𝑙

𝑗𝑖
] is con-

structed to define the relationships between subassemblies and
tasks:

𝑑𝑙𝑗𝑖 =


1, if subassembly j is obtained by task i in product l;
−1, if subassembly j is disassembled by task i in

product l;
0, otherwise

2) Task-skill association matrix
A task-skill association matrix 𝐵 = [𝑏𝑙

𝑖𝑠
] is used to describe

the relationship between tasks and skills.

𝑏𝑙𝑖𝑠 =


1, if disassembly task i involves skill s in product l
0, if disassembly task i does not involve skill s

in product l;
To build up a serial disassembly line, we assume that:
1) One worker is assigned to each workstation, and each

worker has an initial experience.
2) Each disassembly task requires a disassembly skill. The

higher the level of disassembly skill, the shorter the time
required by the disassembly task.

3) Not all components in an EOL product need to be
disassembled.

4) At least one disassembly task is assigned to each
switched-on workstation.
C. Notations

Before we introduce the mathematical model, we list the
notations to be used as follows:

Sets:

W set of workstations.
S set of skills.
P set of workers.
L set of products.

J𝑙 subassemblies set of product l.
I𝑙 task set of product l.
K set of positions on each workstation.
R set of skill levels.

I𝑙𝑐𝑖 task set that conflict with task i of product l.

I𝑙 𝑝
𝑖

preceding task set of task i of product l

Indexes:
𝑗 subassembly index.
𝑖 disassembly task index.
𝑙 product index, l = 1, 2, . . . , L, where L is the

number of products.
𝑤 workstation index, w = 1, 2, . . . , W, where W is the

number of workstations.
𝑠 skill index, s = 1, 2, . . . , S, where S is the

number of skills.
𝑝 worker index, p = 1, 2, . . . , P, where P is the

number of workers.
𝑘 the order index of tasks performed at workstations,

k = 1, 2, . . . , K, where K is the number of tasks that
can be performed at each workstation.

𝑟 skill level index, r = 1, 2, . . . , R, where R is the
number of skill levels.

Parameters:

𝑇 the cycle time of each workstation.

𝑇 𝑙
𝑖𝑟 the time required to perform task i of product l at

skill level r

𝐶𝑙
𝑖𝑟 the cost required to perform task i of product l at

skill level r.

𝐸0
𝑝𝑠 the initial experience of worker p’s disassembly skill s.

𝐸 𝑙𝑏
𝑠𝑟 the lower bound of experience required for disassembly

skill s at level r.

𝐶𝑊
𝑤 startup cost of workstation w.
𝐶𝑝 cost of worker p.
𝑀 a sufficiently large number.

𝑉 𝑙
𝑗 benefits of subassembly j of product l.

𝛼𝑠 learning effect coefficient of skill s.

Decision variables:

𝑥𝑙𝑖𝑤𝑘 if task i of product l is executed at the k-th position

on workstation w, 𝑥𝑙𝑖𝑤𝑘 = 1; otherwise 𝑥𝑙𝑖𝑤𝑘 = 0.
𝑧𝑝𝑤 if the p-th worker is assigned to the w-th workstation

𝑧𝑝𝑤=1, otherwise 𝑧𝑝𝑤 = 0.
𝑢𝑤 if the w-th workstation is started,𝑢𝑤 = 1; otherwise

otherwise 𝑢𝑤= 0.

𝑦𝑙𝑖𝑤𝑘𝑠𝑟 if task i of product l is executed at the k-th position
on workstation w and the level of skill s

is r, then 𝑦𝑙 𝑝
𝑖𝑤𝑘𝑠𝑟

= 1; otherwise 𝑦𝑙 𝑝
𝑖𝑤𝑘𝑠𝑟

= 0.

𝑒𝑤𝑘𝑠 experience corresponding to the skill s of the worker
at workstation w at position k.

𝑔𝑝𝑠𝑟 If the level of skill s of worker p is r after performing
all tasks,𝑔𝑝𝑠𝑟 = 1; otherwise 𝑔𝑝𝑠𝑟 = 0.

𝑓𝑝𝑠 The experience value of skill s for worker p after all
tasks have been performed.
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D. Mathematical Model
With the notations and decision variables listed above, the

optimization problem of DLBP-MLW is formulated as follows
and maximize (or minimize) the following objective function
subject to the following constraints:

max ©­«
∑︁
𝑙∈L

∑︁
𝑗∈J𝑙

∑︁
𝑖∈I𝑙

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑉 𝑙
𝑗𝑑

𝑙
𝑗𝑖𝑥

𝑙
𝑖𝑤𝑘

−
∑︁
𝑤∈W

𝐶𝑊
𝑤 𝑢𝑤−

∑︁
𝑤∈W

∑︁
𝑝∈P

𝐶𝑝𝑧𝑝𝑤 −
∑︁
𝑙∈L

∑︁
𝑘∈K

∑︁
𝑠∈S

∑︁
𝑤∈W

∑︁
𝑖∈I𝑙

∑︁
𝑟∈R

𝐶𝑙
𝑖𝑟 𝑦

𝑙
𝑖𝑤𝑘𝑠𝑟

ª®¬
(2)

max ©­«
∑︁
𝑠∈S

∑︁
𝑟∈R

∑︁
𝑝∈P

𝑟𝑔𝑝𝑠𝑟
ª®¬ . (3)

subject to: ∑︁
𝑝∈P

𝑧𝑝𝑤 = 𝑢𝑤 ,∀𝑤 ∈ W (4)

∑︁
𝑤∈W

𝑧𝑝𝑤 ≤ 1,∀𝑝 ∈ P (5)

𝑓𝑝𝑠 = 𝑚𝑖𝑛(𝐸0
𝑝𝑠 +

∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

∑︁
𝑘∈K

∑︁
𝑟∈R

∑︁
𝑤∈W

𝛼𝑠𝑇
𝑙
𝑖𝑟 𝑦

𝑙
𝑖𝑤𝑘𝑠𝑟

𝐸 𝑙
𝑠𝑟 𝑏),

∀𝑝 ∈ P,∀𝑠 ∈ S.
(6)

∑︁
𝑟∈R

𝑔𝑝𝑠𝑟 = 1,∀𝑝 ∈ P,∀𝑠 ∈ S (7)∑︁
𝑙∈L

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑥𝑙𝑖𝑤𝑘 ≤ 1,∀𝑖 ∈ I𝑙 (8)∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

𝑥𝑙𝑖𝑤𝑘 ≤ 1,∀𝑤 ∈ W,∀𝑘 ∈ K (9)

∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

𝑥𝑙𝑖𝑤𝑘 ≥
∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

𝑥𝑙𝑖𝑤𝑘+1,∀𝑤 ∈ W,∀𝑘 ∈ K\{𝐾} (10)

∑︁
𝑙∈L

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑥𝑙𝑖𝑤𝑘 +
∑︁
𝑙∈L

∑︁
𝑖′∈I𝑙𝑐

𝑖

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑥𝑙𝑖′𝑤𝑘 ≤ 1,∀𝑖 ∈ I𝑙 (11)

𝑥𝑙𝑖𝑤𝑘 ≤
∑︁
𝑙∈L

∑︁
𝑖′∈I𝑙𝑝

𝑖

𝑤−1∑︁
𝑤′=1

∑︁
𝑘′∈K

𝑥𝑙𝑖′𝑤′𝑘′ +
∑︁
𝑙∈L

∑︁
𝑖′∈I𝑙𝑝

𝑖

𝑘−1∑︁
𝑘′=1

𝑥𝑙𝑖𝑤𝑘′

∀𝑖 ∈ I𝑙 , 𝑤 ∈ W, 𝑘 ∈ K\{1}

(12)

∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

∑︁
𝑘∈K

𝑥𝑙𝑖𝑤𝑘 ≤ 𝑀𝑢𝑤 ,∀𝑤 ∈ W (13)

∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

∑︁
𝑘∈K

𝑥𝑙𝑖𝑤𝑘 ≥ 𝑢𝑤 ,∀𝑤 ∈ W (14)

𝑒𝑤𝑘𝑠 = 𝑒𝑤𝑘−1𝑠 +
∑︁
𝑙∈L

∑︁
𝑖∈I𝑙

∑︁
𝑟∈R

𝛼𝑠𝑇
𝑙
𝑖𝑟 𝑦

𝑙
𝑖𝑤𝑘𝑠𝑟

∀𝑤 ∈ W, 𝑠 ∈ S,∀𝑘 ∈ K\{1}
(15)

𝑒𝑤1𝑠 =
∑︁
𝑝∈P

𝐸0
𝑝𝑠𝑧𝑝𝑤 ,∀𝑤 ∈ W,∀𝑠 ∈ S (16)

∑︁
𝑙∈L

∑︁
𝑘∈K

∑︁
𝑠∈S

∑︁
𝑖∈I𝑙

∑︁
𝑟∈R

𝑇 𝑙
𝑖𝑟 𝑦

𝑙
𝑖𝑤𝑘𝑠𝑟 ≤ 𝑇,∀𝑤 ∈ W (17)

∑︁
𝑟∈R

𝑦𝑙𝑖𝑤𝑘𝑠𝑟 = 𝑥𝑙𝑖𝑤𝑘𝑏
𝑙
𝑖𝑠

∀𝑙 ∈ L, 𝑤 ∈ W, 𝑠 ∈ S, 𝑘 ∈ K, 𝑖 ∈ I𝑙

(18)

𝐸 𝑙𝑏
𝑠𝑟 − 𝑀

(
2 − 𝑦𝑙𝑖𝑤𝑘𝑠𝑟 − 𝑥

𝑙
𝑖𝑤𝑘

)
≤ 𝑒𝑤𝑘𝑠

≤ 𝐸 𝑙𝑏
𝑠𝑟+1 + 𝑀

(
2 − 𝑦𝑙𝑖𝑤𝑘𝑠𝑟 − 𝑥

𝑙
𝑖𝑤𝑘

)
∀𝑙 ∈ L, 𝑤 ∈ W, 𝑠 ∈ S, 𝑘 ∈ K, 𝑟 ∈ R, 𝑖 ∈ I𝑙

(19)

𝐸 𝑙𝑏
𝑠𝑟 − 𝑀

(
1 − 𝑔𝑝𝑠𝑟 )

)
≤ 𝑓𝑝𝑠

≤ 𝐸 𝑙𝑏
𝑠𝑟+1 + 𝑀

(
1 − 𝑔𝑝𝑠𝑟+1)

)
∀𝑝 ∈ P, 𝑠 ∈ S, 𝑟 ∈ R\{1}

(20)

𝑥𝑙𝑖𝑤𝑘 ∈ {0, 1},∀𝑖 ∈ I𝑙 , 𝑤 ∈ W, 𝑘 ∈ K, 𝑙 ∈ L (21)

𝑧𝑝𝑤 ∈ {0, 1},∀𝑝 ∈ P, 𝑤 ∈ W (22)

𝑢𝑤 ∈ {0, 1},∀𝑤 ∈ W (23)

𝑦𝑙𝑖𝑤𝑘𝑠𝑟 ∈ {0, 1},∀𝑖 ∈ I𝑙 , 𝑤 ∈ W, 𝑘 ∈ K, 𝑠 ∈ S, 𝑟 ∈ R, 𝑙 ∈ L
(24)

𝑒𝑤𝑘𝑠 ≥ 0,∀𝑤 ∈ W, 𝑘 ∈ K, 𝑠 ∈ S (25)

The objective function (2) aims to maximize profit, which
is the total value of disassembled parts minus start-up work-
stations and time-related disassembly costs. The objective
function (3) aims to maximize the maximum skill level of
all workers after completing the task, i.e., to maximize the
learning outcomes of workers. Constraint (4) specifies that
a single worker is allocated to each activated workstation.
Meanwhile, Constraint (5) mandates that each worker be as-
signed exclusively to one workstation. Constraint (6) calculates
the worker experience after performing all tasks. Constraint
(7) indicates that each worker’s skill must correspond to a
level. Constraint (8) specifies that any task is limited to a
single execution per individual. Constraint (9) indicates that
each spot on a workstation can host no more than one task.
Constraint (10) ensures that lower-numbered workstations are
used preferentially. This Constraint is used to reduce the
solution space and improve model efficiency. Constraint (11)
ensures that one of the conflicting tasks can be executed
at most. Constraint (12) requires that before each task is
executed, at least one of its immediate predecessor tasks must
be completed. Constraint (13) states that tasks can only be
assigned to started workstations. Constraint (14) means that
each started workstation is assigned at least one task. Con-
straint (15) computes the worker’s s-th skill experience before
performing the task at the k-th position on the workstation,
which is equal to the experience at the previous position plus
the experience gained performing the task at the previous
position. Constraint (16) states the first position of experience
for each workstation, etc., on the initial experience of assigned
workers. Constraint (17) means that the time to execute the
task on the workstation must be less than the cycle time.
Constraint (18) states that when task i is assigned to the k-
th position on workstation w, only the corresponding skill
has a unique level. Constraint (19) is a set of inequalities.
When 𝑦𝑙

𝑖𝑤𝑘𝑠𝑟
= 1, i.e., task i of the product l is performed



56 ZHANG et al.: Improved Fruit Fly Algorithm for Multi-Objective Disassembly Line Balancing Problem Considering Learning Effect

by the p-th worker at the k-th position of workstation w,
and the level of skill s is r, according to the definition of
the decision variable, it can be known that 𝑥𝑙

𝑖𝑤𝑘
= 1. In this

case, Constraint (19) requires that the experience value of the
p-th worker corresponding to skill level s should be within
the corresponding interval. Constraint (20) is similar to (19).
When 𝑔𝑝𝑠𝑟= 1, i.e., when worker p has completed all tasks,
the level of skill s is r. At this time, the corresponding skill
experience of the worker is within the interval. Constraints
(21) - (25) represent the value range of decision variables.

III. PROPOSED ALGORITHM

The Multi-Objective Fruit Fly Optimization Algorithm
(MOFOA) is a biologically inspired optimization technique
that models the foraging behaviour of fruit flies, specifi-
cally Drosophila, to address multi-objective optimization chal-
lenges. This algorithm is inspired by how fruit flies balance
multiple goals, such as finding food sources while avoiding
predators. MOFOA aims to concurrently identify the optimal
solution set for multiple objectives by imitating this foraging
behaviour.
A. Multi-Objective Fruit Fly Optimization Algorithm (MO-

FOA)
The multi-objective fruit fly optimization algorithm’s core

idea is to emulate fruit flies’ foraging patterns, treating indi-
vidual fruit flies as potential solutions, and the search space
corresponds to the environment in which fruit flies food
is searched. Specifically, the critical steps of the algorithm
include:

1. Initialize the population: Randomly generate a group
of fruit fly population individuals and distribute them in the
problem’s search space. Each population individual calculates
its fitness value on multiple objective functions.

2. Update position: Following the rules of foraging be-
haviour in fruit flies, the location of each fruit fly is updated to
explore and leverage the information within the search domain
systematically.

3. Update fitness: Recalculate the fitness value of the
updated fruit population individuals.

4. Determine the next-generation population position based
on non-dominance rank order.

5. Termination condition judgment: Based on the initial
termination condition, determine whether the conditions for
stopping the algorithm are met. If satisfied, the algorithm ends;
otherwise, return to step 3 to continue iteration.

The algorithm flow chart is shown in Fig. 4:
B. Encoding and Decoding

To solve the problem better, a three-stage encoding method
𝑋 (𝑥1, 𝑥2, 𝑥3) is adopted, corresponding to disassembly tasks,
workstations, and workers, respectively. When generating new
populations and individuals, integer permutation encoding is
used to create disassembly task sequences of random lengths
and make them feasible. First, a random task sequence is
generated based on all task entities. The sequence is traversed
to eliminate conflicting tasks according to the conflict matrix,
and finally, the task order is adjusted to meet the precedence
relationship. Next, disassembly tasks are randomly assigned to

Fig. 4. Flowchart of multi-objective fruit fly optimization
algorithm.

the workstations and it is ensured that the sum of the execution
time of each task does not exceed the operation cycle of the
workstation. Finally, a greedy strategy is used to preferentially
select workers with high skill experience values to be assigned
to workstations.

Fig. 5 illustrates this process using the DAOG of the
treadmill in Fig. 3 as an example. First, we generate a random
task sequence based on all the task entities in the graph.
Then, we traverse the sequence and eliminate any conflicting
tasks according to the conflict matrix. Finally, we adjust
the order of tasks in the sequence to satisfy the precedence
relationship between tasks. After the above steps, we get
a feasible task sequence. Then, the disassembly tasks are
randomly assigned to workstations in order. In the solution, we
calculate the maximum execution time of each task to ensure
that the total time of the disassembly task on a workstation
is not greater than the operating cycle of the workstation.
Finally, a greedy strategy is adopted to preferentially assign
workers with high corresponding skill experience values to
a workstation. The encoding structure is shown in Fig. 6. It
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gives the structural composition of the optimal solution of
Case 1 in the experimental part. The figure shows that the
first-level integer sequence represents the disassembly task
sequence. The second-level integer sequence represents the
workstation number. For example, disassembly tasks 1, 4, and
12 are assigned to workstation 1, and tasks 16, 32, and 35
are assigned to workstation 2. The integer sequence in the
third layer represents the number of workers. As shown in
the figure, Worker Four is assigned to Workstation One, and
Worker Six is assigned to Workstation 2.

Fig. 5. Task Sequence Generation.

Fig. 6. Coding structure.

During the decoding process, the value of the disassembly
component is first calculated according to the task sequence.
The number of activated workstations and their costs are
determined, the total cost of the workers is calculated, and
finally, the time cost of executing the task is calculated. The
objective function formula calculates the total price [25].
C. Smell Search and Visual Search

In the original FOA algorithm, the visual search process
involves concentrating the fruit flies at the location of the
fly with the highest fitness in the current population. In the
Multi-Objective Fruit Fly Optimization Algorithm, the Pareto
solution set in each iteration is considered the position with
the highest fitness. During the olfactory search, each fruit fly
randomly searches for a solution within the current genera-
tion’s Pareto solution set. This random search is divided into
four methods for the three-stage coding method: task sequence
transformation, worker reallocation, and task reallocation.

These methods are analogous to the search methods in the
growth process of Section 4 [25]. Unlike the circular layout,
where tasks can be randomly assigned to any workstation,
the linear layout requires tasks to be redistributed according
to the order of the workstations. Additionally, the allocated
task execution time must be less than the cycle time of the
workstation.

IV. EXPERIMENTAL STUDIES

A. Experimental Cases and Parameter Settings
This work studies the balancing problem of linear disas-

sembly lines for various products. We selected four products
with different specifications: a washing machine, a treadmill, a
radio, and a hammer drill. These products were then combined
into various multi-product cases for testing. Table I shows the
details of these products. Table II shows size information for
the combined case. According to the scale of the cases, Case
1 is a small-scale case, Case 2 is a medium-scale case, and
Cases 3 and 4 are large-scale cases.

All experiments were conducted on Windows 11, using
IntelliJ IDEA 2022 and the metal multi-objective optimization
framework. We then combined and analyzed the results to
draw comprehensive conclusions. In this chapter, we com-
bined MOFOA with the electric potential energy evolutionary
algorithm (ESPEA) [33], the non-dominated sorting genetic
algorithm II (NSGA-II) [34], the volume metric-based non-
dominated sorting steady-state multi-objective optimization al-
gorithm (S-Metric Selection Evolutionary Multi-Objective Op-
timization Algorithm, SMS-EMOA) [35], the Pareto envelope-
based selection algorithm II (PESA-II) [36] and the strength
Pareto evolutionary algorithm II (SPEA-II) [37]. These algo-
rithms were chosen as benchmarks because they are widely
used, representative multi-objective evolutionary algorithms
with different selection and diversity maintenance strategies,
allowing a comprehensive evaluation of MOFOA’s perfor-
mance. The parameter settings are as follows: the population
size and number of iterations are set to 100. To reduce
the randomness of the intelligent optimization algorithm, ten
experiments were conducted independently for each algorithm.

TABLE I Test product set.

Product Num. of
tasks

Num. of
subassemblies

Num. of
skills

Washing machine 13 15 3
Treadmill 17 18 3

Radio 30 29 3
Hammer drill 46 62 3

TABLE II Case information.

Case #
Product Num.

of
tasks

Num.
of

skillsFlash Washing Radio Hammer
light machine drill

1 0 1 1 0 47 3
2 1 1 1 0 60 3
3 0 1 1 1 93 3
4 1 1 1 1 106 3
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TABLE III Disassembly plan of MOFOA solution case 1

No. Disassembly Sequence 𝑓1(Profit) 𝑓2(Level))

1 (1, 19, 27, 12, 4, 21) → 4, (32, 39, 44, 16, 46, 47, 26) → 6, (10, 15) → 3 1519 32
2 (1, 18, 5, 20, 21, 12, 11, 47, 22) → 2, (22, 16, 23, 34, 17, 46, 26) → 6 1731 28
3 (19, 1, 4, 47, 12, 27, 10, 21) → 4, (22, 23, 34) → 3, (16, 46, 15, 26) → 6 1610 31
4 (2, 6, 14, 18, 20, 12, 21) → 6, (47) → 4, (22, 23, 34, 17, 16, 46, 26) → 3 1650 30
5 (18, 1, 5, 20, 21, 11, 12, 22, 47) → 2, (23, 34, 16, 46, 26, 17) → 3 1740 27
6 (1, 19, 47, 12, 4, 27, 21) → 12, (22, 23, 34, 46, 16, 26, 10, 15) → 6 1702 29

B. Analysis of Experimental Results
Table III shows the Pareto disassembly scheme for case

1 of the MOFOA solution, where 𝑓1 and 𝑓2 represent the
disassembly profit and the worker skill level, respectively. The
disassembly schemes in this table make trade-offs in different
directions for the two optimization objectives of profit and
level. Taking case 1 as an example, six different disassembly
sequences are given. Among them, disassembly sequence 1
means that tasks 1, 19, 27, 12, 4, and 21 are assigned to
workstation one and executed by worker 4, and tasks 32,
39, 44, 16, 46, 47, and 26 are assigned to workstation two
and executed by worker 6. Tasks 10 and 15 are assigned to
workstation three and executed by worker 3. The disassembly
profit is 1519, and the maximum level is 32. Disassembly
sequence 2 means that tasks 2, 18, 5, 20, 21, 12, 11, 47, and
22 are assigned to workstation one and executed by worker
2, and tasks 22, 16, 23, 34, 17, 46 and 26 are assigned to
workstation two and executed by worker 6. The disassembly
profit is 1731, and the maximum level is 28. It can be seen
from the table that the MOFOA algorithm can find different
optimal solutions for the same case, which can be selected
according to the actual situation.

Table IV Comparison of multi-objective indicators and t-
test results of different cases: comparison of multi-objective
optimization indicators of each algorithm in different cases
and t-test comparison of indicators. The indicators in the
table include Hypervolume (HV), Epsilon indicator, Inverted
Generational Distance plus (IGD+) and Relative Hypervolume
(RHV). These indicators reflect the algorithm’s diversity, con-
vergence, and fit to the Pareto front. The ”/” in the t-test in the
table represents the MOFOA algorithm itself for comparison,
”+” and ”-” represent that the current evaluation index of
MOFOA is better or worse than that of the algorithm, and
”∼” indicates that the current index of MOFOA is not much
different from that of the algorithm being compared. The data
of each indicator in the table shows that MOFOA is generally
better than other algorithms for comparison, whether small-
scale or medium-to-large.

Intending to display the algorithm’s performance more
intuitively, Fig. 7 shows the Pareto front of each algorithm
in each case. According to the figure, most Pareto solutions
derived from MOFOA appear in the coordinate system’s upper
right corner. Compared with other algorithms, MOFOA has
better optimization results on two objectives.

C. Comparison with Peer Algorithms
In the original FOA algorithm process, the visual search

process concentrates the fruit flies on the location of the fruit
flies with the highest fitness in the current population. In this
study, we designed a new olfactory search process, which takes
the Pareto solution set of each iteration as the position where
fitness improves. Each fruit fly individual in the population
starts the search from a random solution in the Pareto solution
set of the current generation.

There is a certain degree of randomness in swarm intel-
ligence algorithms. To verify the stability of MOFOA and
its advantages over other intelligent algorithms, we also used
the Non-Dominated Sorting Genetic Algorithm II (NSGA-
II), the Pareto Envelope-Based Selection Algorithm II (PESA-
II), the Intensity Pareto Evolutionary Algorithm (ESPEA), the
Strength Pareto Evolutionary Algorithm II (SPEA-II), and the
Stable Evolutionary Multi-Objective Algorithm (SMS-EMOA)
based on S-metric and non-dominance to find solutions to the
same situation. We conducted multiple independent experi-
ments to compare the multi-objective optimization indicators
of each algorithm in different cases. Through multi-objective
indicator comparison and t-test results, we compared the
Pareto fronts of each algorithm in different cases. Compared
with similar algorithms, our analysis shows that MOFOA is
simple and easy to implement, has fast convergence, and has
strong global search capabilities. It can better avoid falling
into local optima, adapt to many optimization problems, have
relatively low computational complexity, and effectively han-
dle conflicts between multiple objectives. It generates evenly
distributed Pareto solution sets and has the advantage of solid
robustness.

V. DISCUSSION

This study extends the DLBP-MLW model by adding the
objective of maximizing workers’ skill levels. To address the
resulting multi-objective problem, we develop an improved
multi-objective fruit fly optimization algorithm (MOFOA) that
uses the Pareto solution set in each iteration as the search cen-
ter, thereby enhancing convergence and diversity. Experimen-
tal comparisons with ESPEA, NSGA-II, SMS-EMOA, PESA-
II, and SPEA-II show that MOFOA achieves higher disassem-
bly profits and faster skill accumulation. This improvement
reflects better task allocation and more efficient utilization of
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TABLE IV Comparison of multi-objective indicators and t-test results of different cases

Case Algorithm HV Epsilon IGD+ RHV
mean t-test mean t-test mean t-test mean t-test

1

NSGAII 0.337925 + 0.319119 + 0.236402 + 0.404983 +
MOFOA 0.431258 / 0.259811 / 0.153765 / 0.240642 /
PESAII 0.344088 + 0.372453 + 0.258542 + 0.394131 +
ESPEA 0.316541 + 0.369686 + 0.267936 + 0.442636 +
SPEAII 0.391069 + 0.265283 ∼ 0.194891 + 0.311406 +

SMS-EMOA 0.381509 + 0.274088 ∼ 0.19982 + 0.328239 +

2

NSGAII 0.352769 + 0.261991 ∼ 0.225067 + 0.368233 +
MOFOA 0.428416 / 0.252489 / 0.155244 / 0.232739 /
PESAII 0.339909 + 0.325611 + 0.246014 + 0.391248 +
ESPEA 0.334027 + 0.327059 + 0.247406 + 0.401783 +
SPEAII 0.382353 + 0.252669 ∼ 0.205773 + 0.315235 +

SMS-EMOA 0.380543 + 0.225429 ∼ 0.198161 + 0.318476 +

3

NSGAII 0.267199 + 0.419182 + 0.311683 + 0.552330 +
MOFOA 0.461253 / 0.256969 / 0.135205 / 0.227209 /
PESAII 0.248497 + 0.487212 + 0.347177 + 0.583664 +
ESPEA 0.288203 + 0.456777 ∼ 0.307393 + 0.51714 +
SPEAII 0.283728 + 0.409974 + 0.297072 + 0.524638 +

SMS-EMOA 0.312148 + 0.342647 + 0.260516 + 0.477022 +

4

NSGAII 0.360839 + 0.330419 + 0.245845 + 0.438622 +
MOFOA 0.489744 / 0.264744 / 0.146427 / 0.238078 /
PESAII 0.355973 + 0.387879 + 0.259028 + 0.446192 +
ESPEA 0.406409 + 0.314219 + 0.222162 + 0.367724 +
SPEAII 0.397494 + 0.323252 + 0.218766 + 0.381596 +

SMS-EMOA 0.362966 + 0.312821 + 0.229095 + 0.435313 +

”∼” indicates no significant difference between MOCPA and compared algorithms.

Fig. 7. Pareto front diagram

worker experience, ultimately enhancing production efficiency
and product quality. However, the current model assumes fixed

task requirements and worker configurations. Future research
should address dynamic production environments and evaluate
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scalability on larger problem instances to improve practical
applicability.

This work proposes a multi-objective optimization model
for disassembly line balancing, combining worker skill im-
provement with profit maximization. The enhanced MOFOA
demonstrates superior performance compared to existing al-
gorithms. Future research will incorporate dynamic objectives
and explore more advanced optimization approaches—such
as metaheuristic algorithms, hybrid algorithms, and hyper
heuristic algorithms [38] to further enhance solution quality
and adaptability [39][40].

REFERENCES

[1] X. Guo, M. Zhou, S. Liu, and L. Qi, “Multiresource-constrained selective
disassembly with maximal profit and minimal energy consumption,”
IEEE Transactions on Automation Science and Engineering, vol. 18,
no. 2, pp. 804–816, 2020.

[2] Z. Zhao, “Research on influencing factors and balance issues of product
disassembly lines,” Value Engineering 2010, vol. 29, no. 26, pp. 256–
257, 2010.
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