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Column Generation Algorithms for
Two-dimensional Cutting Problem with Surface

Defects
Qi Zhang, Yang Xing, Changtian Zhang, Xiaoxu Sun, Bin Hu, and Arup Das

Abstract—This work investigates a two-dimensional cutting
problem arising from the cutting process of plate products, in
which order plates of given sizes are to be cut from a finite
number of mother plates that contain several surface defects.
Placement of order plates on a mother plate is restricted by
defects of varying severity located on the mother plate as well
as the quality grades of order plates to be cut. We adopt
a two-staged guillotine cutting mode, where the first-staged
cutting position is determined by a width permutation scheme.
Considering the allocation intervals of order plates, we first
formulate the problem as a mixed-integer programming model
that aims at maximizing the total revenue of a steel plant. Then,
we present a column generation-based (CG-based) algorithm
to solve it. To further improve its performance, we devise an
accelerated CG (ACG) algorithm that embeds three heuristic
accelerating strategies in the pricing process. At last, we test the
proposed algorithms by a series of randomly generated instances,
which are constructed according to actual production rules. The
experimental results show that ACG algorithm can effectively
solve large-sized instances.

Key Words—Two-dimensional cutting, Surface defects, Quality
grades, Two-staged guillotine cutting, Column generation.

I. Introduction

IN modern steel manufacturing, the continuous casting–hot
rolling (CC–HR) process is widely used for large-scale steel

plate production. However, fluctuations in equipment status
and variations in process parameters often result in surface
defects on steel plates, including scratches, inclusions, warp-
ing, cracks, and embedded scale (see Fig. 1). According to
the World Steel Association in 2023, approximately 8%–12%
of steel plates exhibit surface defects, causing annual revenue
losses of up to USD 180 million–250 million per medium-
sized steel plant. Although previous studies have shown that
about 60% of customer orders can tolerate a certain degree of
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Fig. 1. Surface defects of varying severity.

defects, most steel mills currently treat defective mother plates
as scrap, leading to significant resource waste and economic
losses.

To improve profitability, steel mills urgently need to op-
timize the utilization strategy of defective mother plates. In
current industrial practice, a two-stage orthogonal guillotine
cutting process is commonly used: first, double-side trimmers
horizontally cut the mother plate into several ”panels”, and
then a slitter performs vertical cuts on these panels to produce
steel plates that meet customer specifications. This process
must simultaneously address complex constraints, including
overlapping rectangular defects and their severity levels, cus-
tomer order tolerance for defect levels, geometric feasibility
(plates must not overlap and must be aligned parallel to the
edges of the mother plate), and heterogeneous sizes of multiple
mother plates. This work formally defines the problem as
the Two-Dimensional Guillotine Cutting + Multiple Mother
Plates + Defect and Quality Constraints Layout Optimization
Problem (2D G MHLOPP DQ). This formulation extends
the NP-hard 2D SLOPP problem [1], [2], resulting in sub-
stantially increased computational complexity that traditional
algorithms struggle to address effectively [3]–[5].

While Cutting and Packing (C&P) problems have been
extensively studied across various domains, such as apparel,
energy, and warehousing, existing approaches fall short when
applied to the specific needs of the steel industry. These needs
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TABLE I Comparison of representative studies and identified research gaps.

Study QG Cutting Stage MMP Method Type Research Gap / Limitation

Parreño et al [10]. × Three-stage × Beam Search No quality grading support

Martin et al [11]. × Unlimited stages ✓ Benders decomposition No QG; unlimited stages increase complexity

Durak & Aksu [12] ✓ Unlimited stages × Online dynamic
programming

Point defects only; no MMP; unlimited stages

Chen et al. [13] ✓ Single/two-stage × Deep Reinforcement
Learning

High computational cost; no overlapping defects; no
MMP

Wang & Zhang [14] × Multi-stage ✓ Improved heuristic
algorithm

No QG; simple defect modeling; not two-stage

Our work ✓ Two-stage ✓ Accelerated Column
Generation (ACG)

Fills gap: QG + 2S + MMP + overlapping defects

include handling defective plates, incorporating quality level
constraints, and managing a two-stage cutting process. For
instance, early work by Gilmore and Gomory [6] employed
Dynamic Programming (DP) to address defect-aware cutting,
but such methods are difficult to scale to industrial problem
sizes. Later studies proposed various cutting strategies and
modeling techniques; however, they often suffer from criti-
cal limitations: inability to accommodate overlapping defects,
lack of support for quality grading, incompatibility with the
industrial two-stage process, or failure to model multiple
heterogeneous mother plates [7]–[9]. These limitations are
summarized in Table I, which highlights the key features
and research gaps of representative studies. As illustrated,
no existing method simultaneously satisfies the full set of
industrial requirements: two-stage cutting, overlapping defect
handling, quality level constraints, and heterogeneous mother
plates. This capability gap represents a critical technological
bottleneck for steel manufacturers aiming to improve resource
efficiency and economic performance.

While recent advances in column generation (CG) have
improved defect handling in cutting problems, critical gaps
persist for industrially relevant constraints. Silva et al. [15]
proposed a CG approach for irregular defects using dynamic
safe zones but excluded overlapping defects, which induce
non-convex feasible regions. Similarly, Moreira et al. [16]
developed a robust CG framework for quality-graded mate-
rials yet required defect-free subregions, limiting applicability
to lumber or leather with pervasive flaws. For overlapping
defect constraints, Caro et al. [17] noted that standard CG
pricing models become NP-hard under intersecting exclusion
zones—a challenge unresolved in contemporary literature. Re-
cent surveys (Furini et al., [18]) highlight that no CG method
simultaneously addresses: (i) overlapping defect aggregation,
(ii) quality-driven cutting hierarchies, and (iii) real-time re-
sponsiveness for industrial-scale instances.

To address these challenges, this work adopts the Column
Generation (CG) method as the core solution framework.
CG is particularly well-suited for large-scale combinatorial

optimization problems because it generates valuable columns
(cutting patterns) dynamically, without requiring exhaustive
enumeration of the pattern space. This makes it highly ef-
fective for managing complex cutting combinations while
supporting intricate constraints such as multi-mother plate
(MMP) handling and multi-quality grading (QG), thereby en-
abling global optimization and strong industrial applicability.
However, standard CG approaches tend to suffer from slow
convergence, especially in scenarios characterized by high
combinatorial complexity, dense overlapping defects, and strin-
gent quality requirements. To overcome these limitations, we
propose an Accelerated Column Generation (ACG) framework.
This framework incorporates a defect-aware interval selection
heuristic that significantly improves convergence speed. As
a result, the proposed approach is particularly well-suited
for real-world industrial settings, where mother plates exhibit
diverse dimensions, defects overlap heavily, and quality con-
straints are tightly enforced.

The main contributions of this work are summarized as
follows:

1) We consider a two-dimensional cutting problem, in which
small items with quality grades have to be cut from large
objects with surface defects such that the total revenue
of a steel plant is maximized. 2D G MHLOPP DQ
is formulated as a mixed-integer programming (MIP)
model via introducing a width permutation scheme and
an allocation intervals generation algorithm.

2) We develop a column generation-based (CG-based) al-
gorithm that embeds the width permutation scheme. A
pricing subproblem is partitioned by width permutations
and converted into several dimension-reduction ones.

3) We present an accelerated CG (ACG) algorithm to im-
prove the performance of CG-based algorithm. In the
pricing process, three heuristic accelerating strategies are
adopted to find a subset of subproblems in each iteration
process and a subset of elements in each subproblem.
The numerical results demonstrate the effectiveness of
the algorithm in real-life scenarios.
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The remainder of this work is organized into five sections.
Section II defines 2D G MHLOPP DQ precisely. Sections
III and IV introduce CG-based algorithm and ACG algorithm
in detail, respectively. Section V reports computational results
obtained from a series of instances, which are randomly
generated based on the actual cutting process. Section VI
concludes with a summary and an outlook on future research.

II. PROBLEM STATEMENT AND MATHEMATICAL
MODEL

2D G MHLOPP DQ can be stated as follows: a set of
large objects, each of which has a fixed width and length.
These large objects have rectangular defects with different
sizes, grades, and positions, and any two defects can overlap.
For each small item type, its width, length, weight, value, and
maximum acceptable quality grade are known. The objective
is to maximize the total revenue by cutting defective large
objects with two-staged guillotine cuts.

Before introducing the MIP model, we first describe a width
permutation scheme and an allocation intervals algorithm. The
former can handle two-staged guillotine cutting patterns, which
is adapted from the width combination scheme of Zhang 𝑒𝑡

𝑎𝑙. [19]. The latter can deal with rectangular defects, which is
inspired by Fasano 𝑒𝑡 𝑎𝑙. [20]. Both of them are beneficial to
model the concerned problem.

A. Width Permutation Scheme
In a two-staged guillotine cutting pattern, the horizontal 1-

cuts produce shelves. After that, small items are obtained with
the vertical 2-cuts. In order to enumerate the positions of 1-
cuts for defective large objects, we devise a width permutation
scheme with the following notations.

Set:
𝐼 Index set of small items;
𝐽 Index set of large objects;
𝑃 Index set of width permutations;
𝑆 Index set of shelves;
w Set of small items’ widths;
W Set of large objects’ widths.

Parameters:
𝑊𝑠𝑝 𝑗 Width of shelf 𝑠 in width permutation 𝑝 for large object

𝑗 , where 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

Example 1: To better understand the working mechanism of the
width permutation scheme, we consider a small instance with
|𝐼 | = 4 and |𝐽 | = 1, and report the results in Table II.

Based on the given small items’ widths, we obtain five width
permutations for a large object that contains four defects of
three grades. As shown in Fig. 2, the red lines represent 1-
cuts’ positions, each of which determines the width of a shelf.
It is worth noting that horizontal 1-cuts can affect the number
of defects. See Fig. 2(d),defect 2 of grade 5 is split into two
segments due to the horizontal cut, which requires renumbering
and separate treatment in the cutting process. For the same set
of input data, we obtain four width combinations [19] for the

TABLE II Results of width permutation scheme

Input w = {1000, 1500, 2000, 1000}
W = {3000}

𝑊111 = 3000, |𝑆 | = 1

𝑊121 = 1000,𝑊221 = 2000, |𝑆 | = 2

Output |𝑃 | = 5 𝑊131 = 2000,𝑊231 = 1000, |𝑆 | = 2

𝑊141 = 1500,𝑊241 = 1500, |𝑆 | = 2

𝑊151 = 1000,𝑊251 = 1000,𝑊351 = 1000, |𝑆 | = 3

large object without defects. The reason for the different results
is that symmetry should be considered in this work. See Figs.
2(b) and (c), defect 2 is cut into different shelves, and we need
to consider both cases.

Algorithm 1 Allocation Intervals Generation (AIG)
Input: l, G, L,M, P
Output: A
1: Initialize A ← ∅, 𝑘 ← 0, 𝐼𝑘 ← ∅
2: Execute width permutation scheme to obtain p
3: for 𝑗 = 1 to |𝐽 | do
4: for 𝑝 = 1 to |𝑃 | do
5: for 𝑠 = 1 to |𝑆 | do
6: 𝑏𝑘𝑠𝑝 𝑗 ← 0, 𝑒𝑘𝑠𝑝 𝑗 ← 𝐿 𝑗
7: A ← A ∪ [𝑏𝑘𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 ], 𝑘 ← 𝑘 + 1
8: for 𝑖 = 1 to |𝐼 | do
9: if 𝑚𝑖 = max{𝑚𝑖} then

10: 𝐼𝑘 ← {𝑖} ∪ 𝐼𝑘
11: end if
12: end for
13: for 𝑑 = 1 to |𝐷 | do
14: if 𝑙𝑏

𝑑 𝑗
≥ 𝑙min then

15: 𝑏𝑘𝑠𝑝 𝑗 ← 0, 𝑒𝑘𝑠𝑝 𝑗 ← 𝑙𝑏
𝑑 𝑗

16: A ← A ∪ [𝑏𝑘𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 ], 𝑘 ← 𝑘 + 1
17: end if
18: if 𝐿 𝑗 − 𝑙𝑒𝑑 𝑗 ≥ 𝑙

min then
19: 𝑏𝑘𝑠𝑝 𝑗 ← 𝑙𝑒

𝑑 𝑗
, 𝑒𝑘𝑠𝑝 𝑗 ← 𝐿 𝑗

20: A ← A ∪ [𝑏𝑘𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 ], 𝑘 ← 𝑘 + 1
21: end if
22: for 𝑖 = 1 to |𝐼 | do
23: if 𝑔𝑑 ≤ 𝑚𝑖 then
24: 𝐼𝑘 ← {𝑖} ∪ 𝐼𝑘
25: end if
26: end for
27: end for
28: end for
29: end for
30: end for
31: return A

B. Allocation Intervals Algorithm
In the cutting process, the method of dealing with defects is

the key to solving 2D G MHLOPP DQ. Since sizes, grades,
and positions of defects are given, we do not need to recompute
them during the solution process. For each small item type,
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Fig. 2. Details of 1-cuts’ positions.

allocation intervals are known after the widths of shelves are
given. Any small item of the same type must be completely
placed in one of the corresponding allocation intervals of each
shelf. In order to enumerate all allocation intervals, we develop
an allocation intervals generation algorithm with the following
notations.

Set:
𝐷 Index set of defects;
𝐾 Index set of allocation intervals;
𝐼𝑘 Index set of small items used in allocation interval 𝑘 ,

𝑘 ∈ 𝐾 , i.e., 𝐼𝑘 ⊆ 𝐼;
l Set of small items’ lengths;
p Set of width permutations;
A Set of allocation intervals;
G Set of defect grades;
L Set of large objects’ lengths;
M Set of maximum acceptable quality grades of small

items;
P Set of positions of defects.

Parameters:
𝑏𝑘𝑠𝑝 𝑗 Beginning position of allocation interval 𝑘 on shelf 𝑠

in width permutation 𝑝 for large object 𝑗 , 𝑘 ∈ 𝐾 , 𝑠 ∈ 𝑆,
𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑒𝑘𝑠𝑝 𝑗 Ending position of allocation interval 𝑘 on shelf 𝑠 in
width permutation 𝑝 for large object 𝑗 , 𝑘 ∈ 𝐾 , 𝑠 ∈ 𝑆,
𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑙𝑖 Length of small item 𝑖, 𝑖 ∈ 𝐼.
𝑙𝑏
𝑑𝑠𝑝 𝑗

Beginning position of defect 𝑑 on shelf 𝑠 in width
permutation 𝑝 along the lengthwise of large object 𝑗 ,
𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑙𝑒
𝑑𝑠𝑝 𝑗

Ending position of defect 𝑑 on shelf 𝑠 in width
permutation 𝑝 along the lengthwise of large object 𝑗 ,
𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑤𝑏
𝑑𝑠𝑝 𝑗

Beginning position of defect 𝑑 on shelf 𝑠 in width
permutation 𝑝 along the widthwise of large object 𝑗 ,
𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑤𝑒
𝑑𝑠𝑝 𝑗

Ending position of defect 𝑑 on shelf 𝑠 in width
permutation 𝑝 along the widthwise of large object 𝑗 ,
𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

The pseudocode of allocation intervals generation algorithm
is given in Algorithm 1. For simplicity in notations, we use the
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[𝑤𝑏𝑑𝑝𝑠 𝑗 , 𝑤
𝑒
𝑑𝑝𝑠 𝑗 ] × [𝑙

𝑏
𝑑𝑝𝑠 𝑗 , 𝑙

𝑒
𝑑𝑝𝑠 𝑗 ]

=

{
(𝑥, 𝑦) ∈ R2

��� 𝑤𝑏𝑑𝑝𝑠 𝑗 ≤ 𝑥 ≤ 𝑤𝑒𝑑𝑝𝑠 𝑗 , 𝑙𝑏𝑑𝑝𝑠 𝑗 ≤ 𝑦 ≤ 𝑙𝑒𝑑𝑝𝑠 𝑗 ,
𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽

}
(1)

definition given in (1) to represent the positions of defects.

Example 2. To better understand the working mechanism
of the allocation intervals generation algorithm, we consider a
small instance with |𝐽 | = 1, |𝐼 | = 4, and |𝐷 | = 4, and report the
results in Table III.

From Table III, we find that some allocation intervals intersect
in pairs, and define these intervals as overlapping intervals. We
consider a small instance with four allocation intervals (see Fig.
3). Let F denote the set of overlapping intervals. We obtain
F = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}.

Fig. 3. Details of overlapping intervals.

C. MIP Model
The MIP model of 2D G MHLOPP DQ is shown in (1)-

(14) and uses the following additional notations.

Set:
𝐾 𝑓 index set of overlapping intervals.

Parameters:
𝑙𝑖 length of small item 𝑖, 𝑖 ∈ 𝐼.
𝑤𝑖 width of small item 𝑖, 𝑖 ∈ 𝐼.
𝐿 𝑗 length of large object 𝑗 , 𝑗 ∈ 𝐽.
𝑊 𝑗 width of large object 𝑗 , 𝑗 ∈ 𝐽.
𝛼 𝑗 penalty coefficient, which depends on the number of

surface defects on large object 𝑗 , 𝑗 ∈ 𝐽.
𝛽 coefficient of large object.
𝑏
𝑘 𝑓 𝑠𝑝 𝑗

beginning position of overlapping interval 𝑘 𝑓 on shelf
𝑠 of width permutation 𝑝 of large object 𝑗 , where 𝑘 𝑓 ∈
𝐾 𝑓 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑑𝑖 demand of small item 𝑖, 𝑖 ∈ 𝐼.
𝑒𝑘 𝑓 𝑠𝑝 𝑗 ending position of overlapping interval 𝑘 𝑓 on shelf 𝑠 of

width permutation 𝑝 of large object 𝑗 , where 𝑘 𝑓 ∈ 𝐾 𝑓 ,
𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑓 𝑗 production cost of large object 𝑗 , 𝑗 ∈ 𝐽.
𝑤𝑒
𝑖

weight (in tons) of small item 𝑖, 𝑖 ∈ 𝐼.
𝑣𝑟
𝑖

revenue per ton of small item 𝑖, 𝑖 ∈ 𝐼.
𝑈𝑖𝑘𝑠𝑝 𝑗 maximum number of small item 𝑖 used in allocation

interval 𝑘 on shelf 𝑠 of width permutation 𝑝 of large
object 𝑗 , where 𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽, i.e.,

𝑈𝑖𝑘𝑠𝑝 𝑗 =

⌊
𝑒𝑘𝑠𝑝 𝑗 − 𝑏𝑘𝑠𝑝 𝑗

𝑙𝑖

⌋
.

TABLE III Results of allocation intervals.

𝑙 = {12300, 12800, 12000, 7500}
𝐿 = {30000}
𝐺 = {3, 5, 3, 1}

Input 𝑀 = {2, 4, 2, 5}
[220, 800] × [3300, 10100]

| P | = 4 [1070, 1880] × [12300, 17500]
[2080, 2970] × [18100, 23000]
[2890, 3000] × [25000, 30000]
𝑏1111 = 0, 𝑒1111 = 30000, 𝐼1 = {4}
𝑏2111 = 0, 𝑒2111 = 12300, 𝐼2 = {4}
𝑏3111 = 17500, 𝑒3111 = 30000, 𝐼3 = {4}
𝑏1121 = 0, 𝑒1121 = 30000, 𝐼1 = {2, 4}
𝑏2121 = 10100, 𝑒2121 = 30000, 𝐼2 =

{1, 2, 3, 4}
𝑏1221 = 0, 𝑒1221 = 30000, 𝐼1 = {4}
𝑏2221 = 0, 𝑒2221 = 12300, 𝐼2 = {4}
𝑏3221 = 17500, 𝑒3221 = 30000, 𝐼3 = {4}
𝑏1131 = 0, 𝑒1131 = 30000, 𝐼1 = {4}
𝑏2131 = 0, 𝑒2131 = 12300, 𝐼2 = {4}

Output |𝐾 | = 26 𝑏3131 = 17500, 𝑒3131 = 30000, 𝐼3 = {4}
𝑏1231 = 0, 𝑒1231 = 30000, 𝐼1 = {2, 4}
𝑏2231 = 0, 𝑒2231 = 18100, 𝐼2 = {1, 2, 3, 4}
𝑏1141 = 0, 𝑒1141 = 30000, 𝐼1 = {4}
𝑏2141 = 0, 𝑒2141 = 12300, 𝐼2 = {4}
𝑏3141 = 17500, 𝑒3141 = 30000, 𝐼3 = {4}
𝑏1241 = 0, 𝑒1241 = 30000, 𝐼1 = {4}
𝑏2241 = 0, 𝑒2241 = 12300, 𝐼2 = {4}
𝑏3241 = 17500, 𝑒3241 = 30000, 𝐼3 = {4}
𝑏1151 = 0, 𝑒1151 = 30000, 𝐼1 = {2, 4}
𝑏2151 = 10100, 𝑒2151 = 30000, 𝐼2 =

{1, 2, 3, 4}
𝑏1251 = 0, 𝑒1251 = 30000, 𝐼1 = {4}
𝑏2251 = 0, 𝑒2251 = 12300, 𝐼2 = {1, 3, 4}
𝑏3251 = 17500, 𝑒3251 = 30000, 𝐼3 = {4}
𝑏1351 = 0, 𝑒1351 = 30000, 𝐼1 = {2, 4}
𝑏2351 = 0, 𝑒2351 = 18100, 𝐼2 = {1, 2, 3, 4}

Decision Variables:
𝑛𝑖𝑘𝑠𝑝 𝑗 number of small item 𝑖 used in allocation interval 𝑘 on

shelf 𝑠 of width permutation 𝑝 of large object 𝑗 , where
𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑢𝑖𝑘𝑠𝑝 𝑗 equals 1 if small item 𝑖 is placed in allocation interval
𝑘 on shelf 𝑠 of width permutation 𝑝 of large object 𝑗 ,
and 0 otherwise; where 𝑖 ∈ 𝐼𝑘 , 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶,
𝑗 ∈ 𝐽.

𝑥𝑘𝑠𝑝 𝑗 equals 1 if allocation interval 𝑘 is used on shelf 𝑠 of
width permutation 𝑝 of large object 𝑗 , and 0 otherwise;
where 𝑘 ∈ 𝐾 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑦𝑘𝑠𝑝 𝑗 equals 1 if allocation interval 𝑘 is the longest one on
shelf 𝑠 of width permutation 𝑝 of large object 𝑗 , and 0
otherwise; where 𝑘 ∈ 𝐾 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑧𝑝 𝑗 equals 1 if width permutation 𝑝 is selected by large
object 𝑗 , and 0 otherwise; where 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

The objective function (2) is to maximize the total revenue of
a steel plant. Its first item represents revenue for placing small
items on defective large objects, the second one is production
cost and the third one is revenue for utilizing surplus materials
from large objects.
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Maximize
∑︁
𝑗∈𝐽

∑︁
𝑝∈𝑃

∑︁
𝑠∈𝑆

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝐼𝑘

(
𝑛𝑖𝑘𝑠𝑝 𝑗𝑤

𝑒
𝑖 𝑣
𝑟
𝑖 − 𝛼 𝑗 𝑓 𝑗

)
+ 𝛽

(
𝑊 𝑗𝐿 𝑗 − 𝑛𝑖𝑘𝑠𝑝 𝑗𝑤𝑖 𝑙𝑖

) (2)

We have the following constraints. Constraints (3) ensure that
exactly one width permutation is selected for each large object,
i.e., ∀ 𝑗 ∈ 𝐽. ∑︁

𝑝∈𝑃
𝑧𝑝 𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (3)

Constraints (4) state that the width of a shelf in a width
permutation for a large object is determined by the widest small
item in this shelf, i.e., ∀𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑢𝑖𝑘𝑠𝑝 𝑗 · 𝑤𝑖 ≤ 𝑊𝑠𝑝 𝑗 · 𝑧𝑝 𝑗 (4)

Constraints (5) limit the number of small items in an
allocation interval on a shelf in a width permutation for a large
object, i.e., ∀𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑛𝑖𝑘𝑠𝑝 𝑗 ≤ 𝑢𝑖𝑘𝑠𝑝 𝑗 ·𝑈𝑖𝑘𝑠𝑝 𝑗 (5)

Constraints (6) impose that the total number of each small
item type should not exceed its demand, i.e., ∀𝑖 ∈ 𝐼𝑘 .∑︁

𝑗∈𝐽

∑︁
𝑝∈𝑃

∑︁
𝑠∈𝑆

∑︁
𝑘∈𝐾

𝑛𝑖𝑘𝑠𝑝 𝑗 ≤ 𝑑𝑖 (6)

Constraints (7) are association constraints between decision
variables, ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.

𝑥𝑘𝑠𝑝 𝑗 ≤
∑︁
𝑖∈𝐼𝑘

𝑢𝑖𝑘𝑠𝑝 𝑗 , (7)

Constraints (8) ensure that the sum of small items’ lengths
cannot exceed the length of an allocation interval on a shelf in
a width permutation for a large object, i.e., ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈
𝑃, 𝑗 ∈ 𝐽. ∑︁

𝑖∈𝐼𝑘
𝑛𝑖𝑘𝑠𝑝 𝑗 𝑙𝑖 ≤ (𝑒𝑘𝑠𝑝 𝑗 − 𝑏𝑘𝑠𝑝 𝑗 ) 𝑥𝑘𝑠𝑝 𝑗 (8)

Likewise, constraints (9) show that the sum of small items’
lengths cannot exceed the length of an overlapping interval on a
shelf in a width permutation for a large object, i.e., , ∀𝑠 ∈ 𝑆, 𝑝 ∈
𝑃, 𝑗 ∈ 𝐽.

∑︁
𝑘 𝑓 ∈𝐾 𝑓

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘 𝑓 𝑠𝑝 𝑗 𝑙𝑖 ≤ 𝑒𝑘 𝑓 𝑠𝑝 𝑗 − 𝑏𝑘 𝑓 𝑠𝑝 𝑗 +
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∑︁
𝑘 𝑓 ∈𝐾 𝑓

𝑥𝑘 𝑓 𝑠𝑝 𝑗
ª®¬ 𝐿 𝑗

(9)
Similarly, constraints (10) require that the sum of small items’

lengths cannot exceed the length of the longest interval on a shelf
in a width permutation for a large object, i.e., ∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈
𝐽.∑︁
𝑘∈𝐾

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘𝑠𝑝 𝑗 𝑙𝑖 ≤ (𝑒𝑘𝑠𝑝 𝑗 −𝑏𝑘𝑠𝑝 𝑗 )𝑦𝑘𝑠𝑝 𝑗 + (1− 𝑦𝑘𝑠𝑝 𝑗 )𝐿 𝑗 (10)

Constraints (11)-(12) are association constraints between
decision variables:

∑
𝑘∈𝐾 𝑦𝑘𝑠𝑝 𝑗 = 0 only if 𝑧𝑝 𝑗 = 0, and that

𝑦𝑘𝑠𝑝 𝑗 = 0 if 𝑥𝑘𝑠𝑝 𝑗 = 0, ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.∑︁
𝑘∈𝐾

𝑦𝑘𝑠𝑝 𝑗 = 𝑧𝑝 𝑗 (11)

𝑦𝑘𝑠𝑝 𝑗 ≤ 𝑥𝑘𝑠𝑝 𝑗 (12)

Constraints (13) guarantee that allocation interval 𝑘 is the
longest interval on a shelf in a width permutation for a large
object only if 𝑥𝑘𝑠𝑝 𝑗 = 𝑦𝑘𝑠𝑝 𝑗 = 1, i.e., ∀𝑘 ∈ 𝐾 \ {|𝐾 |}, 𝑠 ∈
𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽.∑︁

𝑘′∈𝐾
𝑘′>𝑘

𝑥𝑘′𝑠𝑝 𝑗 ≤ (2 − 𝑥𝑘𝑠𝑝 𝑗 − 𝑦𝑘𝑠𝑝 𝑗 )𝐿 𝑗 (13)

Constraints (14)–(15) define the type of variables, i.e., ∀𝑖 ∈
𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽,

𝑛𝑖𝑘𝑠𝑝 𝑗 ∈ Z+, (14)

𝑢𝑖𝑘𝑠𝑝 𝑗 , 𝑥𝑘𝑠𝑝 𝑗 , 𝑦𝑘𝑠𝑝 𝑗 , 𝑧𝑝 𝑗 ∈ {0, 1}. (15)

Since constraints (9) depend on the value of parameters 𝑏
𝑘𝑠𝑝 𝑗

and 𝑒𝑘𝑠𝑝 𝑗 , several cases should be considered.

Case 1: If 𝑏𝑘𝑠𝑝 𝑗 = 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 < 𝑒𝑘′𝑠𝑝 𝑗 ,
Subcase 1a: If 𝑙min ≤ 𝑒𝑘′𝑠𝑝 𝑗 − 𝑒𝑘𝑠𝑝 𝑗 , then

𝑏
𝑘𝑠𝑝 𝑗

= 𝑏𝑘𝑠𝑝 𝑗 = 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘′𝑠𝑝 𝑗 .

Subcase 1b: If 𝑙min > 𝑒𝑘′𝑠𝑝 𝑗 − 𝑒𝑘𝑠𝑝 𝑗 , then

𝑏
𝑘𝑠𝑝 𝑗

= 𝑏𝑘𝑠𝑝 𝑗 = 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘𝑠𝑝 𝑗 .

Case 2: If 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘′𝑠𝑝 𝑗 , 𝑏𝑘𝑠𝑝 𝑗 < 𝑏𝑘′𝑠𝑝 𝑗 , the corresponding
subcases can be dealt with as in Case 1.

Case 3: If 𝑏𝑘𝑠𝑝 𝑗 < 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 < 𝑒𝑘′𝑠𝑝 𝑗 ,
Subcase 3a: If 𝑙min ≤ 𝑒𝑘′𝑠𝑝 𝑗−𝑒𝑘𝑠𝑝 𝑗 , 𝑙min ≤ 𝑏𝑘′𝑠𝑝 𝑗−𝑏𝑘𝑠𝑝 𝑗 ,

then
𝑏
𝑘𝑠𝑝 𝑗

= 𝑏𝑘𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘′𝑠𝑝 𝑗 .

Subcase 3b: If 𝑙min ≤ 𝑒𝑘′𝑠𝑝 𝑗−𝑒𝑘𝑠𝑝 𝑗 , 𝑙min > 𝑏𝑘′𝑠𝑝 𝑗−𝑏𝑘𝑠𝑝 𝑗 ,
then

𝑏
𝑘𝑠𝑝 𝑗

= 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘′𝑠𝑝 𝑗 .

Subcase 3c: If 𝑙min > 𝑒𝑘′𝑠𝑝 𝑗−𝑒𝑘𝑠𝑝 𝑗 , 𝑙min ≤ 𝑏𝑘′𝑠𝑝 𝑗−𝑏𝑘𝑠𝑝 𝑗 ,
then

𝑏
𝑘𝑠𝑝 𝑗

= 𝑏𝑘𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘𝑠𝑝 𝑗 .

Subcase 3d: If 𝑙min > 𝑒𝑘′𝑠𝑝 𝑗−𝑒𝑘𝑠𝑝 𝑗 , 𝑙min > 𝑏𝑘′𝑠𝑝 𝑗−𝑏𝑘𝑠𝑝 𝑗 ,
then

𝑏
𝑘𝑠𝑝 𝑗

= 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 = 𝑒𝑘𝑠𝑝 𝑗 .

Case 4: If 𝑏𝑘𝑠𝑝 𝑗 > 𝑏𝑘′𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 < 𝑒𝑘′𝑠𝑝 𝑗 , the corresponding
subcases can be dealt with in the same way as in Case 3.
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(a) Overlapping intervals for Case 1. (b) Overlapping intervals for Case 2.

(c) Overlapping intervals for Case 3. (d) Overlapping intervals for Case 4.

Fig. 4. Overlapping intervals for four cases.

III. COLUMN GENERATION ALGORITHM
The MIP model in Section II is capable of solving small-

sized instances (containing a smaller number of item types)
in a reasonable time. However, its computational efficiency is
expected to degrade as the instance size increases. To overcome
this difficulty, we propose a CG-based algorithm.

As it is usual in CG algorithm, the full problem is called
the master problem (MP), while the linear program with only a
subset of columns is called the restricted master problem (RMP).
RMP and the pricing subproblem (PP) are solved iteratively,
where the former passes to the latter the dual variables in order
to find promising columns (here cutting patterns), i.e., having
positive reduced costs. If no column of positive reduced cost
can be found then the algorithm is terminated. Otherwise, one
or more columns with positive reduced costs are added to RMP
to improve the current solution, and the algorithm iterates. Fig. 5
illustrates the solving process of 2D MHLOPP DQ via using
CG-based algorithm, in which each PP is partitioned by a width
permutation scheme.

A. Master Problem
Each decision variable of MP represents the decision on

selecting a two-staged two-dimensional cutting pattern for a
large object with surface defects. The MP model is described in
(15)-(18) with the following additions.
Sets:
𝐶 Index set of all possible cutting patterns.

Parameters:
𝑣𝑐 𝑗 Value of cutting pattern 𝑐 of large object 𝑗 , ∀𝑐 ∈ 𝐶, 𝑗 ∈

𝐽;
𝑎𝑖𝑐 𝑗 Number of times small item 𝑖 occurs in cutting pattern

𝑐 of large object 𝑗 , ∀𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽.

Decision Variables:
𝑧𝑐 𝑗 Equals 1 if large object 𝑗 selects cutting pattern 𝑐; 0

otherwise, ∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽.

Objective function:

Maximize
∑︁
𝑗∈𝐽

∑︁
𝑐∈𝐶

𝑣𝑐 𝑗 𝑧𝑐 𝑗 +
∑︁
𝑗∈𝐽

𝛽𝑊 𝑗𝐿 𝑗 − 𝛼 𝑓 (16)

Subject to: ∑︁
𝑗∈𝐽

∑︁
𝑐∈𝐶

𝑎𝑖𝑐 𝑗 𝑧𝑐 𝑗 ≤ 𝑑𝑖 , ∀𝑖 ∈ 𝐼 (17)∑︁
𝑐∈𝐶

𝑧𝑐 𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (18)

𝑧𝑐 𝑗 ∈ {0, 1}, ∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽 (19)

The objective function (16) maximizes the total revenue of a
steel plant. Constraints (17) ensure that the demand of each small
item type is not exceeded. Constraints (18) impose that exactly
one cutting pattern is selected for each large object. Constraints
(19) define the valid values for the decision variables.

CG-based algorithm iterates between the Restricted Master
Problem (RMP) and the Pricing Problem (PP), where the RMP
is similar to the original master problem (MP), but considers
only a subset of cutting patterns 𝐶′ ⊆ 𝐶. To find the optimal
solution of the linear program, we first relax the integrality
constraints (19) as 0 ≤ 𝑧

𝑗
𝑐 ≤ 1. Then, the linear relaxation

of the RMP is solved to obtain a set of dual variable values,
which are used to construct the reduced costs of potential new
columns. The PP is formulated with the reduced cost as its
objective function, and aims to improve the objective value of the
MP by generating feasible two-staged, two-dimensional cutting
patterns with positive reduced costs.

B. Pricing Subproblem
We adopt a width permutation scheme to convert a two-

dimensional cutting pattern into several cutting patterns with
width-fixed shelves. The scheme is successfully applied to
decrease the dimension of a subproblem according to the study
of [4]. PPs mentioned hereafter are all partitioned by a width
permutation scheme, so that a height permutation corresponds
to a PP.
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Fig. 5. Solving process of 2D MHLOPP DQ.

Since large objects with surface defects are considered as
homogeneous, without confusion involved, the indexes 𝑝 (𝑝 ∈
𝑃) and 𝑗 ( 𝑗 ∈ 𝐽) are omitted from the variables in PP𝑝 𝑗 . We
introduce the variables 𝑛𝑖𝑘𝑠 , 𝑢𝑖𝑘𝑠 , 𝑥𝑘𝑠 , and 𝑦𝑘𝑠 which correspond
to the variables 𝑛𝑖𝑘𝑠𝑝 𝑗 , 𝑢𝑖𝑘𝑠𝑝 𝑗 , 𝑥𝑘𝑠𝑝 𝑗 , and 𝑦𝑘𝑠𝑝 𝑗 in the original
problem. PP𝑝 𝑗 can be formulated as the following model:

Objective function:

Maximize
∑︁
𝑠∈𝑆

(∑︁
𝑘∈𝐾

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘𝑠
(
𝑤𝑒𝑖 𝑣

𝑟
𝑖 − 𝛽𝑤𝑖 𝑙𝑖 − 𝜋𝑖

)
− 𝜇

)
(20)

Subject to:

𝑢𝑖𝑘𝑠𝑤𝑖 ≤ 𝑊𝑠 , ∀𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (21)

𝑛𝑖𝑘𝑠 ≤ 𝑢𝑖𝑘𝑠𝑈𝑖𝑘𝑠 , ∀𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (22)∑︁
𝑠∈𝑆

∑︁
𝑘∈𝐾

𝑛𝑖𝑘𝑠 ≤ 𝑑𝑖 , ∀𝑖 ∈ 𝐼 (23)

𝑥𝑘𝑠 ≤
∑︁
𝑖∈𝐼𝑘

𝑢𝑖𝑘𝑠 , ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (24)∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘𝑠𝑙𝑖 ≤ (𝑒𝑘𝑠 − 𝑏𝑘𝑠)𝑥𝑘𝑠 , ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (25)

∑︁
𝑘 𝑓 ∈𝐾 𝑓

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘 𝑓 𝑠𝑙𝑖 ≤ 𝑒𝑘 𝑓 𝑠 − 𝑏𝑘 𝑓 𝑠 +
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∑︁
𝑘 𝑓 ∈𝐾 𝑓

𝑥𝑘 𝑓 𝑠
ª®¬ 𝐿, ∀𝑠 ∈ 𝑆

(26)∑︁
𝑘∈𝐾

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘𝑠𝑙𝑖 ≤ (𝑒𝑘𝑠 − 𝑏𝑘𝑠)𝑦𝑘𝑠 + (1 − 𝑦𝑘𝑠)𝐿, ∀𝑠 ∈ 𝑆 (27)

∑︁
𝑘∈𝐾

𝑦𝑘𝑠 = 1, ∀𝑠 ∈ 𝑆 (28)

𝑦𝑘𝑠 ≤ 𝑥𝑘𝑠, ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (29)

∑︁
𝑘′>𝑘
𝑘′∈𝐾

𝑥𝑘′𝑠 ≤ (2 − 𝑥𝑘𝑠 − 𝑦𝑘𝑠)𝐿, ∀𝑠 ∈ 𝑆 (30)

𝑛𝑖𝑘𝑠 ∈ Z+, ∀𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (31)

𝑢𝑖𝑘𝑠 , 𝑥𝑘𝑠 , 𝑦𝑖𝑠 ∈ {0, 1}, ∀𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 (32)

The objective function (20) maximizes the reduced cost
of a PP, where 𝜋𝑖 (𝜋𝑖 ≤ 0, 𝑖 ∈ 𝐼) and 𝜇 are the dual
variables associated with constraints (17) and (18), respectively.
Constraints (21)–(32) correspond to constraints (4)–(15), which
together formulate the feasibility of a cutting pattern with width-
fixed shelves.

At each time that PP is solved, a cutting pattern 𝑐 of large
object 𝑗 with associated coefficients 𝑣 𝑗𝑐 and 𝑎 𝑗

𝑖𝑐
is generated and

provided to MP. These two values can be calculated as:

𝑣
𝑗
𝑐 =

∑︁
𝑠∈𝑆

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘𝑠
(
𝑤𝑒𝑖 𝑣

𝑟
𝑖 − 𝛽𝑤𝑖 𝑙𝑖

)
, ∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽

𝑎
𝑗

𝑖𝑐
=

∑︁
𝑠∈𝑆

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝐼𝑘

𝑛𝑖𝑘𝑠 , ∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽
(33)

For a given height permutation of a large object, we solve
the corresponding PP to generate a new column based on the
dual variables’ value, where each column represents a feasible
two-staged two-dimensional cutting pattern. All columns with
positive reduced costs are added to MP in each iteration. The
CG-based algorithm is terminated when no such cutting pattern
can be found.

C. CG Procedure

The CG-based algorithm must start with a feasible solution.
This can be achieved using a greedy heuristic, which generates
a set of initial columns for the linear relaxation of the RMP. For
each large object, we introduce a 𝑗 as the set of columns a 𝑗𝑐 =(
𝑎
𝑗

1𝑐, . . . , 𝑎
𝑗

|𝐼 |𝑐

)⊤
and v 𝑗 as the set of corresponding values 𝑣 𝑗𝑐.

The greedy heuristic for generating an initial solution proceeds
as follows, where 𝑑 denotes the demand set of small items,
v𝑟 denotes the revenue set of small items, and w𝑒 denotes the
weight set of small items.

Let 𝑟𝑐 𝑗 denote a reduced cost and 𝑎 𝑗 denote a column, which
can be obtained by solving 𝑃𝑃 𝑗 , ( 𝑗 ∈ 𝐽).The framework of the
CG-based algorithm is presented in Algorithm 3.
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Algorithm 2 Initial solution (IS)
Input: 𝑑, 𝑙, v𝑟 , 𝑤,w𝑒,M,L,W
Output: a, v

1: Initialize a← ∅, v← ∅, 𝐼𝑜 ← ∅
2: for 𝑗 = 1 to |𝐽 | do
3: for 𝑖 = 1 to |𝐼 | do
4: if 𝑚𝑖 = 5 then
5: 𝑎

𝑗

𝑖0 ← min
{
𝑑𝑖 ,

⌊
𝑊𝑗

ℎ𝑖

⌋
×

⌊
𝐿 𝑗

𝑙𝑖

⌋}
6: 𝑣

𝑗

0 ←
⌊
𝑊𝑗

ℎ𝑖

⌋
×

⌊
𝐿 𝑗

𝑙𝑖

⌋
×

(
𝑤𝑒
𝑖
× 𝑣𝑟

𝑖
− 𝛽 × 𝑤𝑖 × 𝑙𝑖

)
7: end if
8: end for
9: end for

10: return a, v

IV. ACCELERATED COLUMN GENERATION
ALGORITHM

In practice, the number of cutting patterns is very large.
Let C denote the set of all feasible cutting patterns, and
𝐶 ⊆ C represent the subset of cutting patterns included in the
Restricted Master Problem (RMP). The cardinality |𝐶 | indicates
the number of cutting patterns currently considered in the RMP.
The direct application of CG is not effective, since |𝐶 | increases
as the number of iterations grows. Numerical results reveal that
efficiency can be greatly improved by the following heuristic
acceleration strategies.

A. Heuristic Acceleration Strategies
We utilize problem-specific domain knowledge to explore

the efficient width permutations, small items, and allocation
intervals, which can potentially speed up the convergence of
the process substantially. Heuristic acceleration strategies of
efficient width permutation (EWP) and efficient small items
(ESI) have been successfully applied to accelerate the CG-
based algorithm. We refer to the study of [4] for details. In this
work, we focus on describing the heuristic acceleration strategy
of efficient interval allocations. In order to estimate which
allocation intervals are efficient, we first design the following
evaluation function based on the cost performance of small item
𝑖, where 𝜁 is a given constant. Next, we sort the corresponding
allocation intervals in descending order according to the value of
𝛿𝑖𝑘 and select the first 𝜂 allocation intervals for each pricing sub-
problem, where 0 < 𝜂 ≤ |𝐾 |, 𝜂 ∈ Z+. These selected efficient
allocation intervals belong to a subset of A, which is denoted
as A′ (A′ ⊆ A). Note that given a set A, we use to denote a
subset of 𝐴′ .

𝛿𝑖𝑘𝑠𝑝 𝑗 =


𝑒𝑘𝑠𝑝 𝑗 − 𝑏𝑘𝑠𝑝 𝑗

𝑙𝑖
, 𝜁 <

𝑒𝑘𝑠𝑝 𝑗 − 𝑏𝑘𝑠𝑝 𝑗
𝑙𝑖

< 1

0, otherwise
(34)

𝑖 ∈ 𝐼𝑘 , 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝐽

Equation (34) defines the efficiency score 𝛿𝑖𝑘𝑠𝑝 𝑗 , which
measures the suitability of allocating a small item 𝑖 to a specific
allocation interval [𝑏𝑘𝑠𝑝 𝑗 , 𝑒𝑘𝑠𝑝 𝑗 ]. The score is calculated as
the ratio between the interval length and the length of item

𝑖, subject to a lower threshold 𝜁 . Only intervals where this
ratio satisfies 𝜁 <

𝑒𝑘𝑠𝑝 𝑗−𝑏𝑘𝑠𝑝 𝑗

𝑙𝑖
< 1 are considered effective.

This evaluation helps to filter out inefficient intervals and select
the most promising allocation intervals, thereby improving the
computational efficiency of the column generation algorithm.

Algorithm 3 CG-based algorithm
Input: 𝑑, 𝑙, 𝑤,w𝑒, v𝑟 ,G,L,M,P,W
Output: an integer solution

1: Execute AIG(𝑙,G,L,M,P) to obtain A
2: Execute IS(𝑑, 𝑙, v𝑟 , 𝑤,w𝑒, 𝐿,𝑊) to obtain A, v
3: repeat
4: Solve linear relaxation of RMP with A, v to obtain

values of dual variables 𝜋
5: stop← true
6: for 𝑗 = 1 to |𝐽 | do
7: Solve PP 𝑗 with parameters
8: 𝑑, 𝑙, 𝑝, 𝑤,w𝑒, v𝑟 ,A,L,W to obtain 𝑟𝑐 𝑗 , 𝑎 𝑗 , 𝑣 𝑗
9: if 𝑟𝑐 𝑗 < 0 then

10: Add 𝑎 𝑗 to A
11: Add 𝑣 𝑗 to v
12: stop← false
13: break
14: end if
15: end for
16: until stop = true
17: Solve RMP with current columns to optimality using

CPLEX
18: return an integer solution

B. ACG Procedure
The procedure for efficient allocation intervals is presented in

Algorithm 4 as follows. According to the heuristic acceleration
strategies of EWP and ESI, we introduce 𝑝′ as the set of efficient
width permutations and 𝐼 ′

𝑘
as the set of efficient small items. The

framework of the ACG algorithm is presented in Algorithm 5.
These three heuristic strategies complement each other in the
ACG framework. EWP focuses on selecting width permutations
with high utilization potential, ESI filters effective small items
through interval evaluation to balance computational efficiency
and solution quality, while EAI further eliminates inefficient
allocation intervals based on area utilization. Together, they form
a progressive filtering mechanism that significantly reduces the
solution space while maintaining solution quality.

V. COMPUTATIONAL EXPERIMENTS
A. Experimental Setup

To evaluate the effectiveness and scalability of the proposed
algorithms, we conduct a series of computational experiments
on problem instances of varying sizes. All algorithms are
implemented in C++ and executed on a personal desktop
equipped with an Intel Core i5 processor (4 cores, 3.3 GHz),
4 GB of RAM, and running Windows 7 64-bit. The commercial
solver CPLEX 12.6 (with default settings) is used to solve the
master problems and linearized subproblems.
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Algorithm 4 Efficient Allocation Intervals (EAI)
Input: 𝑙,G,L,M,P, 𝜁 , 𝜂
Output: A′

1: Execute AIG(𝑙,G,L,M,P) to obtain A
2: for 𝑗 = 1 to |𝐽 | do
3: for 𝑝 = 1 to |P | do
4: for 𝑠 = 1 to |S| do
5: for 𝑘 = 1 to |K | do
6: for 𝑖 = 1 to |𝐼𝑘 | do
7: Compute 𝛿𝑖𝑘𝑠𝑝 𝑗
8: end for
9: end for

10: end for
11: end for
12: end for
13: Sort 𝛿𝑖𝑘𝑠𝑝 𝑗 in descending order, select the first 𝜂 corre-

sponding allocation intervals
14: return A′

Algorithm 5 ACG algorithm
Input: 𝑑, 𝑙, 𝑤,w𝑒, v𝑟 ,G,L,M,P,W, 𝛾, 𝜁 , 𝜂, 𝜏

Output: an integer solution
1: Execute AIG(𝑙,G,L,M,P) to obtain A
2: Execute IS(𝑑, 𝑙, v𝑟 , 𝑤,w𝑒,L,W) to obtain A, v
3: do
4: Solve linear relaxation of RMP withA, v and obtain values

of dual variables 𝜋
5: stop← true
6: Execute EWP to obtain 𝑝′ and select the first 𝛾 correspond-

ing width permutations
7: Execute ESI to obtain 𝐼 ′

𝑘
and select the first 𝜏 corresponding

small items
8: Execute EAI(𝑙,G,L,M,P, 𝜁 , 𝜂) to obtain A′ and select

the first 𝜂 corresponding allocation intervals
9: for 𝑗 = 1 to |𝐽 | do

10: Solve 𝑃𝑃 𝑗 with 𝑑′, 𝑙′, 𝑝′, v𝑟 ′ , 𝑤′,w𝑒′ ,A′,L,W to ob-
tain 𝑟𝑐′

𝑗
, 𝑎′
𝑗
, 𝑣′
𝑗

11: if 𝑟𝑐′
𝑗
< 0 then

12: Add 𝑎′
𝑗

to A
13: Add 𝑣′

𝑗
to v

14: stop← false
15: break
16: end if
17: end for
18: while stop ≠ true
19: Solve RMP with current columns to optimality by using

CPLEX
20: return an integer solution

We first adopt the MIP model as a baseline for performance
comparison. As shown in Table V, MIP fails to solve more than
half of the 60 test instances within the specified time limit,
particularly for medium- and large-sized problems. This result
highlights the limited scalability of the MIP approach due to the
high computational complexity of the 2D G MHLOPP DQ
problem.

TABLE IV Parameters and their values

Parameter Value

𝛼 {1.1, 1.2, 1.3, 1.4}
𝛽 0.01 × 7.85 × 3000 × 10−6

𝑓 30500
| I | {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
G {1, 2, 3, 4, 5}
L {5200, 4500, 4000, 3500, 3000}
M {0, 1, 2, 3, 4, 5}
W {50000, 45000, 40000, 35000, 30000}

In contrast, the CG algorithm demonstrates strong capability
in producing high-quality solutions within acceptable runtimes
for small-sized instances. Given the observed limitations of
MIP, the subsequent experiments focus on comparing the CG
algorithm with the proposed ACG algorithm.

We systematically evaluate CG and ACG across a wide
range of instance sizes, reporting on three key performance
metrics: optimality gaps, average runtime, and scalability.
This comparative analysis provides insights into the practical
applicability of the proposed methods for real-world steel cutting
optimization scenarios.

B. Data and Problem Instances

To ensure the practical relevance of our computational
experiments, we collect production data from a real-world
steel plant and use it to determine the value ranges for key
parameters in our model. Table IV summarizes the parameter
settings, which reflect typical dimensions, quality grades, and
production costs observed in industrial operations. Based on
these parameter settings, we generate 10 groups of test instances,
each corresponding to a different number of small item types
I. Within each group, four defect configurations are defined
according to the number of surface defects on the mother plates:
2–4, 5–7, 8–10, and 11–13 defects, respectively. For each defect
configuration, five random instances are generated, resulting in
a total of 10 × 4 × 5 = 200 test instances. A time limit of 3600
seconds is imposed on each algorithm iteration.

To simulate realistic surface defect conditions, we gen-
erate defect dimensions (width and height) and severity
levels based on statistical distributions derived from plant
data. Specifically, defect widths are sampled from a uni-
form distribution 𝑈 (10,mm, 50,mm), and defect heights from
𝑈 (10,mm, 100,mm), reflecting typical variation in physical
defect sizes. Defect severity levels G = 1, 2, 3, 4, 5 follow an
empirically derived distribution based on operational experi-
ence: 10% at level 1, 20% at level 2, 30% at level 3, 25% at level
4, and 15% at level 5. This setting ensures that the test instances
closely approximate the variability and defect profile found in
real production environments.

To highlight the performance difference between the baseline
MIP model and the CG-based algorithm, we summarize key
experimental results in Table V. The results show that the
MIP model struggles with scalability: for larger instances (e.g.,
Group S3), it fails to return any solutions within the time limit,
while the CG-based approach consistently solves all cases with
significantly lower runtime.
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TABLE V Performance difference between MIP and CG-based
algorithm.

Group |𝑃 | |𝑆 | #instances Ave. time (s)

MIP CG-based MIP CG-based

S1 66 2 16 20 949 175
S2 143 3 13 20 1680 425
S3 218 3 0 20 3600 953

TABLE VI Computational results for the medium-sized
instances.

Group |𝑃 | |𝐾 | |𝑆 | Parameters of ACG Ave. gap
(%)

Ave. time (s)

𝛾 𝜏 𝜂 CG-
based

ACG

M1 219 579 3 88 190 307 1.15 724 375
M2 229 633 3 94 240 347 2.22 1609 491
M3 259 755 3 109 290 439 4.92 2562 695

Note: Gap =
ObjACG−ObjCG-based

ObjCG-based .

C. Computational Results for Small-sized Instances
We first compare CG-based algorithm with MIP, using the

small-sized instances. The computational results are reported in
Table V. For each instance group, we introduce four performance
measures:
• |𝑃 |: the average number of width permutations;
• |𝑆 |: the average number of shelves;
• #instances: the number of instances for which MIP and CG-

based algorithm terminated successfully within the given
time;

• Ave. time: the average computational time in seconds
required to solve instances in each group.

From Table V, it can be taken that the direct usage of MIP is
testified to be limited. For 31 out of the 60 instances, the given
time is reached for solving MIP by CPLEX. It should be noted
that CG-based algorithm is capable of generating high-quality
solutions for all small-sized instances within a reasonable time.
Thus, in the next section, we focus on our evaluation of the
performances of CG-based algorithm and ACG algorithm.

D. Computational Results for Medium-sized Instances
We next implement CG-based algorithm and ACG algotihm

to solve medium-sized instances. The computational results
are reported in Table Table VI. For each instance group, we
introduce additional five performance measures:
• |𝐾 |: the average number of allocation intervals;
• 𝛾: the average number of efficient width permutations;
• 𝜏: the average number of efficient small items;
• 𝜂: the average number of efficient allocation intervals;
• Ave. gap: the average gap between objective value asso-

ciated with an integer solution of CG-based algorithm
and objective value corresponding to an integer solution
of ACG algorithm.

In order to obtain the best parameter combination of ACG
algorithm, we adopt a fixed parameter method. For each group,
parameters are fixed one by one, and their values in the five
random instances are the same.

TABLE VII Performance of ACG algorithm for the large-sized
instances.

Group |𝑃 | |𝐾 | |𝑆 | Parameters of ACG Ave. gap
(%) Ave. time (s)

𝛾 𝜏 𝜂

L1 266 725 3 107 350 442 3.54 899
L2 287 818 3 118 390 507 5.79 973
L3 318 949 3 134 450 598 6.23 1768
L4 292 893 3 126 490 572 7.58 2250

Note: Gap =
UB−ObjACG

UB .

Several remarks could be obtained from the results in
Table VI. First, we select fewer width permutations, small items,
and allocation intervals in each iteration of ACG algorithm. It is
showed that three heuristic acceleration strategies are efficient.
As one may observe, 41.11% of the total width permutations,
47.93% of the total small items, and 55.33% of the total
allocation intervals have a remarkable effect on the improvement
of objective value in each iterative solution process. Second,
both CG-based algorithm and ACG algorithm could find high-
quality solutions for medium-sized instances. Although two
algorithms could deal with these instances, ACG significantly
outperformed CG-based algorithm in terms of solution quality
and computing times.

E. Computational Results for Large-sized Instances
We finally evaluate the performance of ACG algorithm, using

the large-sized instances. The computational results are reported
in Table VII, where UB denotes the optimal objective value of
linear relaxation MP when ACG algorithm stops.

Several remarks could be obtained similar to those in subsec-
tion C. First, ACG algorithm could find high-quality solutions
for large-sized instances. Second, 41.658% of total width
permutations, 49.44% of total small items, and 62.53% of total
allocation intervals have a remarkable effect on the improvement
of objective value in each iterative solution process. It is showed
that three heuristic acceleration strategies are still efficient as
the type of small items increases. In summary, our experimental
results show that ACG algorithm is a computationally efficient
algorithm for 2D MHLOPP DQ.

F. Limitations and Future Works
This work demonstrates the practical value of the proposed

2D G MHLOPP DQ model and the effectiveness of the
ACG algorithm. However, several limitations remain that war-
rant further investigation.

First, the current model assumes a static production environ-
ment and does not explicitly account for dynamic factors such
as order priority changes, machine breakdowns, or unplanned
interruptions. In real-world steel manufacturing, these factors
can significantly affect production scheduling and layout deci-
sions, potentially rendering static solutions suboptimal under
changing conditions [21]–[24].

Second, although the ACG algorithm improves computational
efficiency and performs well on large instances, its scalability
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and robustness may be challenged in ultra-large-scale and highly
heterogeneous scenarios. Enhancing algorithmic adaptability
and performance under such conditions remains an open
research problem.

Looking ahead, we plan to extend the
2D G MHLOPP DQ model by incorporating steel grade
compatibility between mother plates and customer orders.
This addition will further increase the model’s complexity,
as it introduces new constraints on item placement and order
satisfaction [25]–[29].

In addition, future work will explore the integration of
advanced mathematical techniques, including effective cutting-
plane inequalities [30] and bounding strategies [31], to improve
solution quality and reduce computation time. These enhance-
ments are expected to facilitate the development of exact or near-
exact methods capable of solving large-scale industrial problems
with higher precision and reliability [32]–[34].

VI. CONCLUSIONS
This work investigates a two-dimensional cutting optimiza-

tion problem encountered in steel manufacturing, where surface
defects and quality grade constraints significantly influence cut-
ting layout decisions. To address the problem’s computational
challenges, we propose an ACG algorithm that builds upon
the traditional CG framework by embedding three heuristic
acceleration strategies: efficient width permutations, efficient
small item selection, and efficient allocation interval pruning.

Extensive numerical experiments confirm that both CG and
ACG algorithms are capable of producing high-quality solutions
for small- and medium-sized instances. For large-scale and
highly heterogeneous problems, the ACG algorithm consistently
outperforms the standard CG approach in terms of runtime and
solution quality. These findings highlight the strong potential of
the proposed method for supporting practical decision-making
in real-world steel production environments, improving material
utilization, and reducing production waste.

Nevertheless, this study has several limitations. The current
model assumes a static environment and does not consider
dynamic production factors such as order priority changes or
equipment failures. Additionally, while ACG performs well on
large instances, further improvements in scalability and robust-
ness are needed for ultra-large-scale industrial applications.

Future work will extend the model to incorporate additional
industrial factors such as steel grade compatibility between
mother plates and customer orders. We also plan to explore
the integration of advanced techniques, including valid inequal-
ities and bounding methods, to further enhance algorithmic
efficiency and solution precision for real-time industrial deploy-
ment.
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