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Human-Robot Collaborative Disassembly Profit
Maximization via Improved Grey Wolf Optimizer

Zhiwei Zhang, Shaokang Dai, Chong Li, Weitian Wang, Jesse Parron, and Emilio Herrera

Abstract—With the continuous advancement of modern tech-
nologies, a growing number of new products feature increas-
ingly complex designs. The complexity of these products poses
significant challenges to the planning and execution of their
disassembly processes. This work proposes a human-robot col-
laborative disassembly solution to address such challenges. A
circular disassembly line layout enables the cyclic assignment
of tasks between human operators and robots. This layout
overcomes the time and spatial limitations inherent in tradi-
tional disassembly lines. A human-robot collaborative circular
disassembly line balancing problem is formulated, along with its
integer mathematical programming model aimed at maximizing
disassembly profit. The competency of the model is verified by
applying the commercially available software CPLEX to small-
scale product examples. An improved grey wolf optimizer is
proposed to solve large instances that CPLEX fails to address.
Its experimental results are compared with those of several
representative intelligent optimizers. The results indicate that
it surpasses existing methods, highlighting its potential as a
promising solution for industrial applications.

Key Words—Human-robot collaboration, Circular disassembly
line, Mixed-integer programming, Grey wolf optimizer.

I. INTRODUCTION

THE continuous development of modern society, particu-
larly in the economic and technological sectors, has led

to an increasing rate of obsolescence of industrial machines,
equipment, and electronic products [1, 2, 3, 4]. Disposing
of end-of-life or discarded products places immense pressure
on resources and the environment. Improper disposal results
in the squandering of valuable resources and contributes to
environmental pollution [5]. Upon reaching the end of its
operational lifespan, industrial machinery is often landfilled
or incinerated. Such disposal contributes to the accumulation
of waste and releases hazardous substances, such as lead and
tungsten, into the soil, water bodies, and the atmosphere. These
releases have severe detrimental effects on human health and
ecosystems. Disassembly is a sustainable production method
that transforms end-of-life or discarded products into resources
and reusable components, promoting material recovery and
recycling [6, 7]. This method reduces the manufacturing
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costs of new products and fosters the development of related
remanufacturing industries [8]. It establishes a complete re-
manufacturing industry chain, providing a new driving force
for economic growth.

Disassembly is the process of dismantling used products
into parts and materials [9]. Remanufacturing involves repro-
cessing disassembled parts to create new products. There-
fore, disassembly is the prerequisite and foundation of re-
manufacturing, enabling its execution. The disassembly line
balancing problem (DLBP) involves the optimal assignment
of disassembly tasks to workstations while satisfying various
constraints [10, 11, 12, 13]. Currently, four traditional types
of disassembly line layouts exist: linear, U-shaped, two-sided,
and parallel layouts [14, 15, 16, 17]. Each layout has its
characteristics, but all are challenging to balance in task
allocation, a problem also present in production systems. To
address this problem, scholars have proposed a loop-closed
layout, and research on this layout has continued uninterrupted
for the past 20 years [18, 19, 20].

In this paper, inspired by the circular layout in flexible
production systems [21], we propose a new type of disas-
sembly line: the circular layout. These lines feature worksta-
tions arranged in a circular pattern. Unlike other disassembly
line models, they facilitate the cyclic distribution of tasks
based on their characteristics. Their layout and distribution
scheme effectively overcome the space constraints of other
disassembly lines while enhancing the flexibility of task al-
location to workstations. With the advancement of artificial
intelligence technology, robots have rapidly developed and
are now widely used in industrial practice [22, 23, 24, 25].
Traditionally, disassembly work has been primarily performed
manually by humans. The introduction of robots has partially
automated the disassembly process. However, robots cannot
fully replace humans due to the increased complexity involved
in product disassembly. Although robots offer advantages in
disassembly efficiency, speed, and safety, their ability to handle
uncertainties and adapt to complex product structures remains
limited [26, 27].

In contrast, humans possess unparalleled flexibility, enabling
them to manage unexpected situations and perform delicate
disassembly tasks more effectively than robots. However,
when human operators disassemble dangerous subassemblies,
insecurity may inevitably arise. Therefore, cooperation be-
tween humans and robots can complement their strengths
[28, 29, 30] , resulting in a human-robot collaborative team
that outperforms systems consisting solely of human operators
or robots. Lee et al. [31] propose a human-robot collaboration-
based disassembly task allocation and planning method that
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considers limited resources and factors such as human safety.
Based on human fatigue levels, Li et al. [32] apply a human-
robot collaboration strategy and use the discrete bee algorithm
to minimize disassembly time. Wu et al. [33] propose a
novel human-robot collaborative disassembly line balancing
problem. A mixed-integer programming model is designed to
minimize the number of workstations, smoothing exponents,
and various costs. A hybrid local search genetic algorithm is
developed and applied to solve the disassembly problem for
batteries. Tsarouchi et al. [34] apply human-robot collabora-
tion to a hybrid assembly cell, implement a decision algorithm
based on the evaluation of multiple criteria, and present the
case of human-robot assembly of a hydraulic pump. Although
many studies on human-robot collaboration operations exist,
few studies address human-robot collaboration in circular
disassembly lines. Our work addresses this gap.

We leverage the characteristics of a circular disassembly
line to efficiently assign tasks to workstations, thereby en-
hancing the efficiency and quality of the entire disassembly
process. A robot performs tedious and hazardous disassembly
tasks, while a human executes delicate ones. Certain common
tasks can be performed by either a human or a robot. This
approach achieves the objective of human-robot collaborative
disassembly, reduces costs, and ensures human safety [35, 36].
A mathematical planning model is developed for the task as-
signment problem. The model aims to maximize disassembly
profit [37]. The modeling process comprehensively considers
conflict relationships, precedence relationships, task allocation,
and other relevant factors.

Swarm intelligence optimizers have been widely applied
in DLBP research. Ding et al. [38] propose a novel multi-
objective ant colony algorithm for solving multi-objective
optimization problems. Guo et al. [39] propose an improved
multi-objective shuffled frog leaping algorithm and apply it to
human-robot collaborative disassembly line balancing. Wang
et al. [17] apply a simulated annealing algorithm to solve
a parallel DLBP. Ren et al. [40] propose a gravitational
search-based algorithm for solving a profit-oriented parallel
DLBP. Kalayci et al. [41] introduce an artificial bee colony
algorithm for tackling a multi-objective serially correlated
DLBP. Recent studies have also focused on applying specific
algorithms in disassembly scheduling [42, 43, 44, 45, 46, 47].
The Grey Wolf Optimizer (GWO) is an intelligent global
optimization algorithm inspired by the social behavior of grey
wolves in nature [48, 49, 50, 51]. It offers fast convergence
and strong global search capabilities and can be adapted to
solve various problems by adjusting algorithm parameters.
GWO has been extensively applied across multiple domains,
including data mining [52], image processing [53], neural
network optimization [54, 55], and scheduling problems [56].
In solving the CCDP described in this work, the hunting
process of a grey wolf is simulated. The optimal solution
is obtained by continuously adjusting the positions of the
grey wolves, effectively solving the optimization problem. The
contributions of this work are two-fold:

1) A human-robot collaboration approach is proposed to
enhance disassembly efficiency. Given that load balancing
among workstations facilitates the equal distribution of

tasks between humans and robots, this paper adopts a
circular disassembly line layout. This enlarges worksta-
tion utilization and improves the balance of human-robot
collaboration. In this paper, a mathematical model is built
to address the problem described above.

2) An improved grey wolf optimizer (IGWO) is developed.
A three-stage encoding scheme is created for the assign-
ment relationship among tasks, workstations, and oper-
ators. The hunting process of grey wolves is simulated
through two behaviors: searching and attacking. This
process enhances the global search capability, increases
population diversity, and improves convergence perfor-
mance.

In this work, CPLEX, a commercially available exact solver,
is applied to verify the mathematical model’s competency.
The proposed solution is compared with those of several
representative optimizers. Experimental results demonstrate
that IGWO outperforms its peers in solving the problem.

The paper is structured into five main sections. Section II
introduces the problem and its mathematical model. Section
III describes the algorithms. Section IV outlines the experi-
ments performed. Finally, Section V concludes this study and
discusses our future work.

II. PROBLEM STATEMENT AND FORMULATION

A. Problem Description

This work addresses a circular disassembly line layout
with human-robot collaborative disassembly patterns. Fig. 1
illustrates the layout. A robot and a human workstation are
positioned on the circular disassembly line to execute their
assigned tasks. This design cyclically allocates tasks with the
same attributes to the same workstation, thereby maximizing
overall operational efficiency and balancing workloads among
the disassembly workstations.

For effective disassembly, tasks are classified into three
categories: dangerous, delicate, and common, based on the
characteristics of the parts. Robots handle the disassembly of
hazardous subassemblies, such as high-pressure or explosive
components, thereby reducing the risk of accidents for human
operators. Humans perform delicate disassembly tasks, such as
handling computer chips and precision instruments, ensuring
high precision and accuracy. For common tasks, either a
human or robot can be used, and the decision is made based
on the specific situation. In recent years, the human-robot
collaboration model has seen significant adoption. Effective
coordination between humans and robots benefits the system
by improving efficiency, ensuring safety, and reducing disas-
sembly costs.

For ease of modeling and use, we represent the relation-
ships among tasks and the relationships between tasks and
subassemblies as matrices.

• A precedence matrix 𝐹 = [ 𝑓𝑖,𝑖′ ]. It describes the prece-
dence relationship between two tasks, where 𝑖 and 𝑖

′

represent two different disassembly tasks of a product,
respectively.
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Fig. 1. Human-robot collaborative circular disassembly line.

𝑓𝑖,𝑖′ =

{
1, if task 𝑖 is immediately executed before task 𝑖

′

0, otherwise

• A conflict matrix 𝐺 = [𝑔𝑖,𝑖′ ]. It describes the conflict
relationship between two tasks.

𝑔𝑖,𝑖′ =


1, if task 𝑖 is executed before task 𝑖

′

-1, if task 𝑖 and task 𝑖
′

conflict
0, otherwise

• A disassembly matrix 𝐷 = [𝑑 𝑗 ,𝑖]. It describes the dis-
assembly relationship between subassembly 𝑗 and task
𝑖.

𝑑 𝑗 ,𝑖 =


1, if subassembly 𝑗 is obtained through task 𝑖
-1, if subassembly 𝑗 is disassembled by task 𝑖
0, otherwise

In this study, we make the following assumptions:
1) The conflict relation 𝐺 and the precedence relation 𝐹

among tasks are known.
2) A workstation turned on is assigned at least one task for

disassembly.
3) The disassembly cost of humans and robots for each task

performed is known.
4) The benefit of each task execution is known.
5) Delicate and dangerous disassembly tasks are identified

and known.

B. Symbol Definition and Mathematical Model

• 𝑐𝑅
𝑖

: cost for robot in executing disassembly task 𝑖.

• 𝑐𝐻
𝑖

: cost for human in executing disassembly task 𝑖.

• 𝑐𝑅𝑤: the start-up cost of robot workstation 𝑤.

• 𝑐𝐻𝑤 : the start-up cost of human workstation 𝑤.

• 𝑑 𝑗𝑖: the disassembly relationship between subassembly 𝑗

and task 𝑖.

• I: number of tasks.

• I: set of task I = {1, 2..., 𝐼}.

• I𝐺
𝑖

: set of conflict relationships for task 𝑖.

• I𝐹
𝑖

: set of precedence relationships for task 𝑖.

• I𝑅: set of dangerous tasks to be disassembled by a robot.

• I𝐻 : set of delicate tasks to be disassembled by a human.

• J: number of subassembly.

• J: set of subassembies J = {1, 2..., 𝐽}.
• K: Number of task execution sequences.

• K: set of task positions on each workstation K =

{1, 2..., 𝐾}.
• 𝑝 𝑗 : the value of subassembly 𝑗 .

• 𝑡𝑅
𝑖

: time for robot in executing disassembly task 𝑖.

• 𝑡𝐻
𝑖

: time for human in executing disassembly task 𝑖.

• W: number of workstations.

• W: set of workstation W = {1, 2...,𝑊}.
1) Decision Variables:

ℎ𝑖 =

{
1, if task 𝑖 must be disassembled by a human
0, otherwise

𝑟𝑖 =

{
1, if task 𝑖 must be disassembled by a robot
0, otherwise

𝑥𝑖,𝑘,𝑤 =


1, if task 𝑖 is executed at the 𝑘th position
on workstation 𝑤
0, otherwise

The ”otherwise” in ℎ𝑖 and 𝑟𝑖 has two meanings. When 𝑟𝑖
= 0, task 𝑖 may be disassembled by a human or not be done,
implying selective disassembly. When ℎ𝑖 = 0, task 𝑖 may be
disassembled by a robot or not be done.

𝑠𝑤 =

{
1, if the workstation w is turned on
0, otherwise

𝑞𝑅𝑤 =

{
1, if the robot disassembly workstation 𝑤 is turned on
0, otherwise

𝑞𝐻𝑤 =

{
1, if the human disassembly workstation 𝑤 is turned on
0, otherwise

𝑙𝑖,𝑘,𝑤 : start time of task 𝑖 at order 𝑘 of workstation 𝑤

2) Mathematical Model:

𝑚𝑎𝑥
©­«
∑︁
𝑖∈I

∑︁
𝑗∈J

∑︁
𝑘∈K

∑︁
𝑤∈W

𝑝 𝑗𝑑 𝑗𝑖𝑥𝑖,𝑘,𝑤 −
∑︁
𝑖∈I

𝑐𝐻𝑖 ℎ𝑖

−
∑︁
𝑖∈I

𝑐𝑅𝑖 𝑟𝑖 −
∑︁
𝑤∈W

𝑞𝑅𝑤𝑐
𝑅
𝑤 −

∑︁
𝑤∈W

𝑞𝐻𝑤 𝑐
𝐻
𝑤

) (1)
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The objective function (1) aims to maximize the disas-
sembly profit.

∑
𝑖∈I

∑
𝑗∈J

∑
𝑘∈K

∑
𝑤∈W 𝑝 𝑗𝑑 𝑗𝑖𝑥𝑖,𝑘,𝑤 represents

the value gained by disassembling subassembly 𝑗 .
∑

𝑖∈I 𝑐
𝐻
𝑖
ℎ𝑖

represents the cost of a human operator to perform task
𝑖.

∑
𝑖∈I 𝑐

𝑅
𝑖
𝑟𝑖 represents the cost of a robot to perform task

𝑖.
∑

𝑤∈W 𝑞𝑅𝑤𝑐
𝑅
𝑤 represents the cost of turning on the robot

workstation 𝑤.
∑

𝑤∈W 𝑞𝐻𝑤 𝑐
𝐻
𝑤 represents the cost of turning on

the human workstation 𝑤.
3) Constraints: ∑︁

𝑘∈K

∑︁
𝑤∈W

𝑥𝑖,𝑘,𝑤 ≤ 1, 𝑖 ∈ I (2)∑︁
𝑖∈I

𝑥𝑖,𝑘,𝑤 ≤ 1, 𝑘 ∈ K, 𝑤 ∈ W (3)∑︁
𝑖∈I

𝑥𝑖,𝑘,𝑤 ≥
∑︁
𝑖∈I

𝑥𝑖,𝑘+1,𝑤 , 𝑘 ∈ K \ 𝐾, 𝑤 ∈ W, (4)∑︁
𝑘∈K

∑︁
𝑤∈W

𝑥𝑖,𝑘,𝑤 +
∑︁
𝑘∈K

∑︁
𝑤∈W

∑︁
𝑖
′ ∈I𝐺

𝑖

𝑥𝑖′ ,𝑘,𝑤 ≤ 1, 𝑖 ∈ I (5)

𝑥𝑖,𝑘,𝑤 ≤
∑︁
𝑖
′ ∈I𝐹

𝑖

∑︁
𝑘
′ ∈K

∑︁
𝑤

′ ∈W

𝑥𝑖′ ,𝑘′ ,𝑤′ , 𝑖 ∈ I, 𝑘 ∈ K, 𝑤 ∈ W (6)

𝑠𝑤 = 𝑞𝐻𝑤 + 𝑞𝑅𝑤 , 𝑤 ∈ W (7)

𝑠𝑤 ≥ 𝑠𝑤+1, 𝑤 ∈ W \𝑊 (8)∑︁
𝑖∈I

∑︁
𝑘∈K

𝑥𝑖,𝑘,𝑤 ≤ 𝑀𝑠𝑤 , 𝑤 ∈ W (9)∑︁
𝑖∈I

∑︁
𝑘∈K

𝑥𝑖,𝑘,𝑤 ≥ 𝑠𝑤 , 𝑤 ∈ W (10)

𝑙𝑖,𝑘,𝑤 ≥ 𝑙𝑖′ ,𝑘′ ,𝑤 + 𝑡𝑅
𝑖
′ 𝑟𝑖′ + 𝑀 (𝑟𝑖 + 𝑟𝑖′ + 𝑥𝑖,𝑘,𝑤

+𝑥𝑖′ ,𝑘′ ,𝑤 − 4),
𝑖 ∈ I𝑅, 𝑖

′ ∈ I𝑅, 𝑘 ∈ K, 𝑘
′ ∈ K, 𝑘

′
< 𝑘, 𝑤 ∈ W

(11)

𝑙𝑖,𝑘,𝑤 ≥ 𝑙𝑖′ ,𝑘′ ,𝑤 + 𝑡𝐻
𝑖
′ ℎ𝑖′ + 𝑀 (ℎ𝑖 + ℎ𝑖′ + 𝑥𝑖,𝑘,𝑤

+𝑥𝑖′ ,𝑘′ ,𝑤 − 4),
𝑖 ∈ I𝐻 , 𝑖

′ ∈ I𝐻 , 𝑘 ∈ K, 𝑘
′ ∈ K, 𝑘

′
< 𝑘, 𝑤 ∈ W

(12)

𝑙𝑖,𝑘,𝑤 ≥ 𝑙𝑖′ ,𝑘′ ,𝑤 + 𝑡𝐻
𝑖
′ ℎ𝑖′ + 𝑡𝑅𝑖′ 𝑟𝑖′ + 𝑀 (ℎ𝑖 + ℎ𝑖′

+𝑟𝑖 + 𝑟𝑖′ − 2),
𝑖 ∈ I, 𝑖

′ ∈ I𝐹𝑖 , 𝑘 ∈ K, 𝑘
′ ∈ K, 𝑘

′
< 𝑘, 𝑤 ∈ W

(13)

𝑙𝑖′ ,𝑘+1,𝑤 ≥ 𝑙𝑖,𝑘,𝑤 , 𝑖 ∈ I, 𝑖
′ ∈ I, 𝑘 ∈ K \ 𝐾,

𝑤 ∈ W
(14)

ℎ𝑖 = 0, 𝑖 ∈ I𝑅 (15)

𝑟𝑖 = 0, 𝑖 ∈ I𝐻 (16)

ℎ𝑖 + 𝑟𝑖 =
∑︁
𝑘∈K

∑︁
𝑤∈W

𝑥𝑖,𝑘,𝑤 , 𝑖 ∈ I (17)

ℎ𝑖 ≥ 0, 𝑖 ∈ I (18)

𝑟𝑖 ≥ 0, 𝑖 ∈ I (19)

𝑥𝑖,𝑘,𝑤 , 𝑞
𝑅
𝑤 , 𝑞

𝐻
𝑤 , 𝑆𝑤 ∈ {0, 1} , 𝑖 ∈ I, 𝑘 ∈ K, 𝑤 ∈ W (20)

𝑙𝑖,𝑘,𝑤 ≥ 0, 𝑖 ∈ I, 𝑘 ∈ K, 𝑤 ∈ W (21)

Constraint (2) ensures that each task is performed only once
during disassembly. Constraint (3) limits each workstation
to performing one disassembly task at a time. Constraint
(4) ensures sequential task assignment, such that if a task
is in a later position, a task must also be assigned to the
earlier position. Constraint (5) prevents conflicting tasks from
being executed simultaneously, allowing at most one to be
performed. Constraint (6) enforces task precedence. Constraint
(7) specifies that a workstation can be activated only as a robot
or human station. Constraint (8) requires workstations to be
activated sequentially. Constraint (9) restricts task assignments
to already activated workstations, with 𝑀 being sufficiently
large to satisfy the constraint. Constraint (10) guarantees that
activated workstations are assigned at least one disassembly
task.

Constraint (11) ensures that when a robot performs a dis-
assembly task, the subsequent task starts after the completion
of its predecessor. This holds if both task 𝑖 and task 𝑖

′
are

performed by the robot. Constraint (12) ensures that when a
human performs a disassembly task, the subsequent task starts
after the completion of its predecessor. Constraint (13) defines
the execution time relationship between tasks that satisfy the
precedence constraint. This holds when any two of ℎ𝑖 , ℎ

′
𝑖
,

𝑟𝑖 , and 𝑟
′
𝑖

equal one. Constraint (14) defines the sequential
execution time constraint between adjacent disassembly tasks.
Constraint (15) mandates that a robot perform the task. Con-
straint (16) mandates that a human perform the task. Constraint
(17) ensures that only one person or robot can perform task
𝑖. Constraints (18) and (19) define the range of the decision
variables.

III. PROPOSED ALGORITHM

A. Improved Grey Wolf Optimizer

Grey wolves are social animals known for team behaviors
and strong survival abilities. A grey wolf pack follows a
strict hierarchy, containing one 𝛼 wolf, one 𝛽 wolf, one 𝛿

wolf, and many 𝜔 wolves. Each wolf represents a solution to
the optimization problem, with higher-ranked wolves typically
providing better solutions than lower-ranked ones. The 𝛼 wolf
holds the highest rank in the pack, leading with the greatest
dominance and representing the optimal solution. If a 𝛽 or 𝛿
wolf achieves better fitness than the 𝛼 wolf, it replaces the
latter as the new leader.

The 𝛽 wolf ranks second to the 𝛼 wolf and is its most
promising competitor. It assists the 𝛼 wolf in the search
process and can be promoted to 𝛼 or replaced by another wolf
based on fitness.
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A 𝛿 wolf, weaker than a 𝛽 wolf but with stronger search
ability, excels at exploring new search spaces to find better
solutions. If a 𝛿 wolf finds a high-quality solution, it may
replace a higher-ranked wolf. It may degrade into a 𝜔 wolf if
it performs poorly.
𝜔 wolves occupy the lowest rank in the pack and are

dominated by the other wolves. Due to their poor fitness,
they may be eliminated. They improve their fitness mainly
by observing and mimicking other wolves’ behavior. Despite
their subordinate status, they play a crucial role in ensuring
diversity. They make up the largest proportion of the pack,
maintaining population diversity.

Four grey wolves assume distinct roles in a pack, engag-
ing in dynamic competition and cooperation. This dynamic
helps the pack maintain stability and adapt to environmental
changes.

This work transforms the grey wolves’ prey-searching
process into finding the optimal solution for the objective
function (1). The algorithm operates in three stages: population
initialization, hunting, and population update. The flowchart is
shown in Fig. 2. The population initialization generates initial
individuals and adjusts them to feasible solutions. The hunting
phase calculates the fitness of the grey wolves and selects the
top three solutions. The population update saves the optimal
solution from each iteration to guide the subsequent search.
The specific implementations are described below.

Unlike the standard GWO, the proposed IGWO incorpo-
rates a three-stage encoding scheme and a two-step search
and attack mechanism. The design is inspired by balancing
exploration and exploitation in complex combinatorial spaces.
The theoretical basis lies in maintaining population diversity
through 𝜔 wolves while guiding convergence via 𝛼, 𝛽, and 𝛿
wolves, which effectively prevents premature convergence and
enhances global search capability. This combination addresses
the NP-hardness of large-scale disassembly problems.

B. Encoding

In this process, selecting and disassembling tasks, assigning
task sequences to workstations, and allocating robots and
humans influence the objective value. We design a three-
stage encoding: 𝜃 = (𝜃1, 𝜃2, 𝜃3). 𝜃1 represents the sequence
of disassembly tasks. 𝜃2 represents the workstation assigned
to each disassembly task in 𝜃1. 𝜃3 = {(𝜇ℎ𝑟 , 𝜇𝑤)} represents
the assignment of humans and robots to workstations, where
𝜇ℎ𝑟 indicates either a human or robot and 𝜇𝑤 denotes the
workstation number.

Fig. 3 visualizes the prioritization relationship of disas-
sembly tasks [57]. Fig. 4 combines the task, workstation,
and operator (i.e., human or robot) assignment diagrams. For
example, 𝜃1 is ⟨1, 2, 3, 5, 9, 12, 11, 15⟩. The corresponding 𝜃2
is 𝜃2 = ⟨1, 2, 2, 1, 1, 2, 2, 1⟩. Tasks 1, 5, 9, and 15 are assigned
to the first workstation, and tasks 2, 3, 12, and 11 to the second.
Since the robot’s position is fixed, there must be a workstation
where the robot performs tasks. The total cost of the current
disassembly sequence is calculated, revealing that tasks in
the first workstation are more cost-effective when performed
by the robot than by the worker. The second workstation

Fig. 2. The flow chart of IGWO.

is more suitable for worker tasks. Therefore, the robot is
assigned to the first workstation and the worker to the second.
𝜃3 = {(𝑅, 1), (𝐻, 2)}, where 𝑅 represents the robot and 𝐻 the
human. This encoding strategy results in an actual disassembly
assignment scheme for the circular disassembly line shown in
the figure.

Fig. 3. Task precedence graph.

Fig. 4. Three-stage encoding example.

C. Population Initialization

The initial population is generated by random sampling.
This ensures solution randomness and facilitates subsequent
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searches. However, the randomly generated solutions may not
be feasible. We revise these infeasible solutions to make them
possible. This work categorizes tasks based on their attributes
and uses a collaborative human-robot disassembly approach.
Tasks for human disassembly are assigned to one workstation,
while tasks for robots are assigned to another. This allocation
principle enhances disassembly efficiency, reduces costs, and
optimizes the process. Before allocation, tasks are defined as
dangerous, delicate, or common. Dangerous tasks are assigned
to robots, delicate tasks to humans, and common tasks to ei-
ther. Tasks are first assigned based on their attributes, grouped
by operator type, and then transferred to workstations.

Algorithm 1 Population initialization

Input: population size
Output: population P
1: while (n<population size) do
2: Generate a random task sequence 𝜃1
3: Adjust 𝜃1 to satisfy conflict and precedence relation-

ships
4: Obtain corresponding 𝜃2 and 𝜃3 according to the en-

coding strategy
5: Add 𝜃(𝜃1, 𝜃2, 𝜃3) to P
6: n = n + 1
7: end while
8: return P

D. Hunting

Grey wolves hunt through two processes: searching and
attacking prey. The prey’s position represents a potential
solution in the improved grey wolf algorithm (IGWO) applied
to the proposed problem. During hunting, the fitness of the
grey wolves is evaluated. Grey wolves are ranked by fitness,
and the top three (𝛼, 𝛽, and 𝛿) are selected as leaders. 𝜔 wolves
follow the 𝛼, 𝛽, and 𝛿 wolves to explore the solution space.
Grey wolves adjust their positions during searching, moving
towards potential prey to find better solutions. Fig. 5 illustrates
the searching process of grey wolves, showing the change in a
wolf’s position from 𝜋1 to 𝜋2. This helps the algorithm escape
local optima, facilitating a global search for better solutions
and enhancing population diversity.

Due to space limitations, we present a simplified search
process. Initially, task 9 is randomly selected from sequence
𝜋1. Following the precedence relations in Fig. 3, tasks 12
and 11, which follow task 9, are excluded. Next, a new
subsequence, tasks 7, 10, and 14, is selected based on the
precedence relation starting with task 5. This adjustment
results in a new position, 𝜋2. During the search, 𝜔 wolves
follow the lead of 𝛼, 𝛽, and 𝛿 wolves. Role changes among
𝛼, 𝛽, 𝛿, and 𝜔 wolves may occur due to differences in their
search spaces. For example, if the 𝛽 wolf finds prey with better
fitness than the 𝛼 wolf, it replaces the 𝛼 wolf.

When a potential prey is encountered during the search, the
grey wolf evaluates its fitness against the current optimal so-
lution (i.e., the 𝛼 wolf’s fitness). If the prey’s fitness surpasses
the current optimal solution’s fitness, the wolf prepares to

attack it. Otherwise, the search continues for a better solution.
Fig. 6 illustrates the attacking process. ”Grey wolf” represents
an individual selected from 𝛼, 𝛽, or 𝛿, and ”Prey” refers to
one of the better solutions found so far. A ”Mask” sequence
is randomly generated with a length equal to the number of
tasks. This sequence determines the source of task information:
if the corresponding bit in ”Mask” is 0, the information comes
from the Grey wolf; otherwise, it comes from the Prey. Task
assignments are continuously checked for feasibility to avoid
redundancy throughout this process.

After identifying a promising solution (prey), the Grey wolf
signals other wolves to join the attack, completing the hunting
process. As the wolves approach the prey, those receiving the
signal adjust their positions based on location. Fig. 7 shows
an example of position variation. In the ”Original position”
sequence, task 𝑥 is randomly selected. The immediately pre-
ceding task 𝑦 and following task 𝑧 of 𝑥 are determined based
on the precedence relation matrix. A ”New position” (prey
position) is generated by inserting task 𝑥 randomly between
tasks 𝑦 and 𝑧. Once the prey is attacked, its fitness replaces
that of the 𝛼 wolf, becoming the new optimal solution. The
search directions of 𝛼, 𝛽, and 𝛿 wolves are updated to guide
𝜔 wolves in exploring new spaces. This process aims to
discover higher-quality solutions and converge towards the
prey position, representing the optimal solution.

E. Population Update

The search process in IGWO is dynamic, with the optimal
solution continuously evolving. Each iteration involves select-
ing the best individual from the current population based on
fitness. This individual is retained in the population. In each
iteration, the optimal individual is compared with others in
the population. New 𝛼, 𝛽, and 𝛿 wolves are selected based
on their fitness to lead the pack, updating the positions of the
other wolves accordingly.

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

A. Experimental Setup

Table I presents the names of the test cases and the
corresponding number of tasks in each case. To verify the cor-
rectness of the mathematical model, we have applied CPLEX
as an exact solver that is commercially available. Next, we
solve the proposed problem using IGWO. We then compare

Fig. 5. Searching process.
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Fig. 6. Attacking process.

Fig. 7. Position variation during prey attack.

the obtained solution with other intelligent optimization algo-
rithms to assess its performance. All of these operations are
being performed on a Windows 10 system with an Intel(R)
Core(TM) i5-6200U CPU @ 2.30GHz 2.40 GHz environment.

We develop a mathematical planning model for human-
robot collaboration circular disassembly lines. To validate and
solve the model, we use the data provided in Table I to test
the mathematical model developed [11, 58]. These test cases
include small, medium, and large-scale instances, which have
been carefully chosen to reflect different levels of problem
complexity. The consistent superiority over other algorithms
across these cases highlights its scalability and effectiveness
in solving complex disassembly optimization problems.

B. Experimental Results

Table II summarizes the results of validating our mathe-
matical model using CPLEX. The table presents case ID, task
assignments, maximum disassembly profit, and computational
time. In the ”Assignment of tasks” column, symbols 𝐻 and
𝑅 represent the human and robot disassembly workstations,
respectively. For example, in Case 1, Tasks 1, 3, and 7 are
assigned to the first workstation, where a robot performs
the disassembly tasks. Task 10 is allocated to the second
workstation, where a human handles the disassembly. Cases

TABLE I Case information

Case ID Case name Number of tasks

1 Washing machine 13

2 Treadmill 17

3 Recirculating ball steering machine 21

4 Microwave Oven 44

5 Knotting machine 52

6 Refrigerator 66

1 to 3, detailed in Table I, represent small and medium-
sized scenarios where CPLEX identifies optimal sequences
and solutions. However, for larger cases (Cases 4 to 6), CPLEX
fails to find an optimal solution within the 7200-second time
limit. This limitation highlights the computational challenges
of NP-hard problems in large-scale disassembly scenarios. In
summary, the results in Table II demonstrate the feasibility
and accuracy of our mathematical model.

Table III presents the results of applying IGWO to each
case. This table shows that IGWO finds optimal solutions
quickly for small and large cases. As expected, the solution
time increases with case size; however, the algorithm consis-
tently delivers high-quality solutions across all scenarios. This
demonstrates the robustness of IGWO in handling disassem-
bly optimization problems, balancing computational efficiency
with solution quality, even as complexity increases.

Table IV compares the performance of IGWO and CPLEX
across different case sizes. In solving single-objective prob-
lems, CPLEX achieves the known optimal solution. For small
and medium-sized cases (Cases 1-3), IGWO consistently
matches the global optimal solutions obtained by CPLEX,
but in significantly less time. Specifically, IGWO is 2 to 30
times faster than CPLEX for these cases. In contrast, for large
cases (Cases 4-6), CPLEX fails to find a solution within the
7200-second time limit, while IGWO finds feasible solutions
in approximately 25 seconds. This significant performance dif-
ference highlights IGWO’s ability to solve larger-scale disas-
sembly optimization problems efficiently. The ”Improvement”
column in the table shows the speed advantage of IGWO over
CPLEX. IGWO’s advantage becomes more pronounced as
case size increases, highlighting its effectiveness and efficiency
in handling complex disassembly optimization tasks. These
results confirm that IGWO is a highly effective alternative
to CPLEX, particularly suited for large-scale disassembly
optimization where timely solutions are crucial.

Fig. 8 and Fig. 9 illustrate the task allocation for circular
and linear disassembly line layouts with equal task sizes.
The disassembly process includes hazardous tasks, which can
incur high costs for the employer and the employee if injured
during execution [59]. Hazardous tasks in Case 4 include
<1, 6, 21, 40>. The figures show that linear and circular
disassembly lines assign robots to hazardous tasks to ensure
safer disassembly. The key difference between the two layouts
lies in the number of humans and robots required to complete
the same task size. The linear layout requires four humans
and four robots to work simultaneously, while the circular
layout requires only two humans and two robots. This layout

TABLE II CPLEX solutions

Case
ID Assignment of tasks Maximum

profit
Running

time
1 (1,3,7)→r,(10)→h 1090 3.008s
2 (2,14,6,12,16)→r,(17)→h 1290 130.024s
3 (1,8,5)→r,(3,13,20,15,17,19)→h 2189 53.051s
4 ———- —– 7200s
5 ———- —– 7200s
6 ———- —– 7200s
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TABLE III IGWO solutions

Case ID Assignment of tasks Maximum profit Running time

1 (1,3,7)→r,(10)→h 1090 1.43s

2 (2,6,14,12,16)→r,(17)→h 1290 4.389s

3 (1,8,5)→h,(3,13,15,17,20,19)→r 2189 4.732s

4
(1,3,19,10,28,29,30,20,13,31,39,40,41,26,8,9,21,11,6)→r,

(7,18,44,42,2,35,23,4,22,25,27,12,32,33,5,43,37,38,14,15)→h
1045 12.688s

5
(36,31,18,49,51,26,1,9,16,21,29,11,46,30,40,41,38,43,39,8,13,10,6,20,50,48)→r,

(4,25,3,32,45,52,12,14,33,47,23,28,15,44,37,27,34,22,35,7,24,42,17,5)→h
2983 8.646s

6
(1,9,50,10,56,61,23,26,29,53,36,6,39,51,19,30,20,49,40,41, 21,46,59,16,31,11,66,60,38)→r,

(35,22,44,2,45,54,3,55,57,24,64,25,62,52,12,65,27,13,28,14,7,5,32,33,48,63,34,58,15,42,8,17,47,43,37,4,18)→h
2291 24.82s

TABLE IV Comparison between IGWO and CPLEX

Case ID Maximum profit Running time
CPLEX IGWO CPLEX IGWO Improvement

1 1090 1090 3.008s 1.430s 2.103s
2 1290 1290 130.024s 4.389s 29.625s
3 2189 2189 53.051s 4.732s 11.211s
4 — 1045 — 12.688s —
5 — 2983 — 8.646s —
6 — 2291 — 24.82s —

Fig. 8. Circular disassembly line disassembly Case 4.

optimizes spatial utilization and reduces operational costs.
In contrast, task assignments in a linear disassembly layout

are primarily guided by precedence relations, with additional
constraints from cycle time and space limitations. This struc-
ture requires activating new workstations when tasks exceed
cycle times, dispersing tasks across multiple stations to avoid
overloading any single operator. While this methodical ap-
proach ensures adherence to operational constraints, it may
reduce efficiency in distributing tasks that benefit from opera-
tor specialization. The circular disassembly layout overcomes
these constraints by using a cyclic assignment mechanism.
This mechanism consolidates tasks suited to the same opera-
tor on a single workstation, improving operational efficiency
and profitability. Unlike the linear layout, the circular layout
optimally balances task distribution and operator specializa-
tion, providing a superior solution for complex disassembly
operations.

Fig. 10 compares three distinct disassembly models: human-
robot collaborative, human-only, and robot-only. The graph
plots cases on the horizontal axis and maximum profit on

Fig. 9. Linear disassembly line disassembly Case 4.

Fig. 10. Comparison of three disassembly models.

the vertical axis, with each disassembly mode represented by
a different colored line. The orange line represents human-
robot collaborative disassembly, the blue line represents robot-
only disassembly, and the green line represents human-only
disassembly. Examination of the graph reveals that human-
robot collaborative disassembly offers notable advantages over
robot-only and human-only modes. Specifically, the collab-
orative approach achieves higher disassembly efficiency and
maximizes profit across all analyzed cases. This advantage
highlights the synergistic benefits of combining human preci-
sion with robotic efficiency in disassembly operations.

Table V presents a comparative analysis of IGWO and
other algorithms—CPA, SSA, WOA, and FOA—applied to
our disassembly cases. These algorithms use distinct search
strategies and behavioral patterns, providing a comprehensive
performance overview across different cases. IGWO consis-
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TABLE V Algorithm Comparison

Case
IGWO CPA SSA WOA FOA

Profit Running time Profit Running time Profit Running time Profit Running time Profit Running time

1 1090 1.430s 1090 2.229s 1090 23.390s 1027 4.04s 1090 6.158s

3 1290 4.389s 1290 2.863s 1290 26.341s 1284 4.302s 1290 5.849s

3 2189 4.732s 2189 3.029s 2189 26.553s 2186 4.912s 2189 11.525s

4 1045 12.688s 1019 11.453s 1037 26.189s 1019 7.460s 1019 47.102s

5 2983 8.646s 2973 8.076s 2973 22.004s 2973 5.667s 2973 75.965s

6 2291 24.82s 2291 24.825s 2291 22.970s 2291 11.983s 2291 92.258s

tently outperforms the other algorithms in maximizing profit,
particularly in Cases 4 and 5. While solving time increases
with problem size for all algorithms, IGWO generally out-
performs SSA and FOA, competes closely with CPA, and
shows negligible differences compared to WOA. In conclu-
sion, IGWO is a highly effective algorithm for solving CCDP,
demonstrating robustness across various problem sizes and
outperforming alternative optimization approaches regarding
solution quality.

Fig. 11. Comparison of algorithm convergence curves for
Case 3.

We conduct 20 independent experiments for each algorithm.
The average experimental results are calculated, and the con-
vergence curve is plotted. As shown in Fig. 11, IGWO finds the
optimal solution more quickly and demonstrates superior con-
vergence performance compared to the four other algorithms.
Therefore, IGWO emerges as the superior algorithm for CCDP
in this study. Specifically, it exhibits superior convergence
performance and accuracy compared to its peers in solving
large-scale combinatorial optimization problems.

This work introduces IGWO as a novel approach to solving
CCDP. A mathematical model is developed to maximize profit
in CCDP. We use CPLEX to validate the correctness of the
mathematical model and verify IGWO’s solution capability.
Experimental results confirm IGWO’s superiority in solving

CCDP. Specifically, we simulate the searching and attacking
processes of grey wolves. The searching process enables grey
wolves to expand their search range, avoid local optima, and
discover higher-quality solution spaces.

V. CONCLUSION AND FUTURE WORK

This work introduces IGWO as a novel approach to solving
CCDP. A mathematical model is developed to maximize profit
in CCDP. We use CPLEX to validate the competency of
the mathematical model and verify IGWO’s solution capa-
bility. The superiority of IGWO in solving CCDP is con-
firmed through experimental results. Specifically, we simulate
the searching and attacking processes of grey wolves. The
searching process enables grey wolves to expand their search
range, avoid local optima, and discover higher-quality solution
spaces.

Our next work aims to 1) apply IGWO to solving multi-
objective CCDP, 2) improve the flexibility of human-robot
collaborative disassembly, and 3) improve the algorithm and
apply it to handle more complex problems in real-world
manufacturing and remanufacturing contexts.

In practical deployment, the proposed IGWO can be in-
tegrated into manufacturing execution systems or digital twin
platforms, enabling adaptive scheduling in real-time. However,
further collaboration with industry partners and on-site testing
will be essential to validate scalability and robustness under
real production conditions.
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