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Abstract—As an important part of the closed-loop supply
chain, the improper disposal of end-of-life (EOL) products
reduces overall system efficiency and causes environmental pol-
lution. Thus, it is crucial to dispose of EOL products timely
and effectively. Disassembly is a key method for recycling EOL
products. During mass disassembly, tools suffer deterioration due
to long-term wear and corrosion, increasing processing time for
disassembly tasks. To prevent continuous tool deterioration, a tool
replacement operation is proposed. Therefore, this work proposes
a circular disassembly line balancing with tool replacement,
aiming to maximize the disassembly profit by improving the
disassembly efficiency as much as possible under the load balance
of individual workstations. In this work, a crossover as well
as four mutations are provided so as to discretize and extend
the original migratory bird optimizer to the solution of the
circular disassembly line balancing with tool deterioration and
replacement. In the experimental phase, the correctness of the
model is verified by the CPLEX solver. The effectiveness of the
proposed algorithm is given by comparison experiments due to
the CPLEX solver as well as other optimization algorithms.
The experimental results show that the proposed algorithm is
more effective than the discrete fruit fly optimization algorithm,
discrete whale optimization algorithm, and salp swarm algorithm.

Note to Practitioners—This work addresses the improvement
of disassembly efficiency and profitability by line design and tool
change in the disassembly of end-of-life products. I-shaped line
designs that are not fully loaded unbalance the load on the work-
stations, resulting in some workstations being busy while others
are idle. This lengthens workstation processing time and reduces
disassembly efficiency. In addition, wear and corrosion of tools
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used over time increases the processing time of disassembly tasks.
To prevent workstation load imbalance and excessive tool aging,
we propose a circular disassembly line and a tool replacement
strategy. By optimizing the disassembly process, higher efficiency
and profitability can be achieved. Experimental results show that
our scheme has better load balance and disassembly efficiency.
This research is important for practitioners who wish to improve
disassembly efficiency and reduce environmental pollution. The
method presented in this work is not applicable to the disassembly
of large products such as automobiles and airplanes.

Key Words—Circular disassembly line balancing, Tool deteri-
oration, Tool replacement, Migratory bird optimizer.

I. INTRODUCTION

W ITH the rapid advancement of technology, the de-
mand for electromechanical products surges, and con-

sequently, the number of EOL products also rises. Recycling
these EOL products using appropriate methods mitigates re-
source consumption and environmental impact, significantly
contributing to sustainable development. Disassembly is a cru-
cial method for recycling EOL products, enabling the recovery
of useful subassemblies. In the disassembly line, factors such
as the number of tasks per workstation, the wear and tear
of disassembly tools, and the execution time and sequence of
disassembly tasks affect the efficiency and cost of the process.
Balancing these factors to achieve efficient disassembly is
known as the disassembly line balancing problem (DLBP) (1).

In the actual disassembly process, many factors affect
efficiency. In the factory, disassembly tools separate the re-
quired subassemblies from EOL products. However, these
tools impact disassembly task processing time due to corro-
sion, high temperature, or wear from prolonged use, increasing
processing time. This situation is called tool deterioration.
Tool deterioration is a significant issue in production schedul-
ing (2–4). Yang and Kou (5) consider scheduling problems
with deteriorating jobs and learning effects, proposing several
polynomial-time algorithms to solve single machine schedul-
ing problems. Miao et al. (6) consider the parallel machine
scheduling problem with step-deteriorating jobs, proposing a
polynomial-time optimal algorithm. Wang et al. (7) consider
resource allocation scheduling with a deterioration effect and
position-dependent workloads on a single machine. Previous
studies assume the deterioration coefficient of a task is the
same on all devices, but in some disassembly processes, it
is influenced by the status of the tools in the workstation
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and the task’s complexity. Thus, each task often has varying
deterioration coefficients on different workstations.

When the quantity of recycled products is large, prolonged
disassembly leads to more severe tool deterioration. To address
tool deterioration during large-scale disassembly, this work
studies the DLBP considering tool replacement. Long-term
use of deteriorating tools seriously affects the efficiency of
disassembly tasks, increasing both disassembly time and cost
(8). To mitigate the adverse impact of tool deterioration
on disassembly tasks, this work introduces tool replacement
operations (9). When a tool deteriorates significantly, timely
tool replacement operations reduce the impact on disassembly
efficiency and maximize profits. Additionally, tasks have dif-
ferent deterioration coefficients on different workstations, and
the actual processing time of each disassembly task is a linear
function of the service time of the corresponding disassembly
tool (10).

Since the introduction of the DLBP, research explores DLBP
under various disassembly layouts for different problem mod-
els and disassembly types (11). The I-shaped disassembly line
has a simple structure, making it easy to understand and imple-
ment. Altekin and Tevhide (12) propose a chance-constrained
piecewise linear mixed integer programming model. Ilgin et
al. (13) propose a linear physical programming-based disas-
sembly line balancing method. However, for more complex
disassembly types, using I-shaped disassembly lines is less
efficient. To address this issue, Hezer and Kara (14) propose
an optimization model for parallel DLBP. Agrawal and Tiwari
(15) propose the stochastic mixed model U-shaped DLBP.
With in-depth research on various DLBPs, researchers con-
tinue to explore new disassembly line layouts to better address
more complex disassembly problems.

In this work, we investigate tool deterioration and tool
replacement during large-scale disassembly processes. Based
on the problem characteristics, we propose a new layout for
disassembly lines: circular disassembly lines, as shown in
Fig. 1. The workstations of the circular disassembly line are
arranged in a circular pattern, allowing subassemblies to be
distributed circularly to each workstation. Each disassembly
task can be executed on the current workstation or the next,
reducing deterioration effects in long-term disassembly. This
layout improves space utilization, addresses workstation time
constraints, and increases disassembly flexibility. Limited re-
search exists on circular disassembly line layouts and deteri-
oration effects in disassembly lines. In summary, we propose
a multi-product circular disassembly line balancing with tool
deterioration and replacement(MCTDR). We also establish a
disassembly line balancing model to maximize disassembly
profits.

Scholars adopt various methods to solve the DLBP, primar-
ily categorized into precise methods and approximate methods.
Due to the NP-complete nature of DLBP, solving large-scale
DLBP using precise methods is challenging. Compared to
precise methods, approximate methods obtain optimal or near-
optimal solutions within a reasonable time. Approximate meth-
ods mainly include heuristic and meta-heuristic methods. Yao
and Gupta (16) propose a fish school search algorithm to solve
the sequence-dependent DLBP on a U-shaped layout. Zhou et

Fig. 1. The circular disassembly line layout.

al. (17) develop a backward recursive algorithm to solve the
DLBP in remanufacturing. Ren et al. (18) propose a 2-optimal
algorithm to solve the DLBP with multiple objectives. Liu et
al. (19) propose an improved discrete Bees algorithm to solve
the collaborative optimization of robotic disassembly sequence
planning and robotic DLBP. Li et al. (20) develop a multi-
objective immune-mechanism collaborative genetic algorithm
based on a Pareto set to solve the multi-objective DLBP. Zhu
et al. (21) propose a Pareto firefly algorithm to solve the multi-
objective DLBP with hazard evaluation.

The Migrating Birds Optimization (MBO) algorithm is a
meta-heuristic algorithm that simulates the behavior of migra-
tory birds flying in a V-shaped formation to reduce energy
consumption and has advantages such as fewer parameters,
ease of understanding, and a simple structure (22). Alp and
Alkaya (23) apply MBO to a fairness-oriented integrated
shift scheduling problem. Zhang et al. (24) use the MBO
algorithm to solve the Type-I multi-manned assembly line
balancing problem. Li et al. (25) apply MBO to solve the
robotic U-shaped assembly line balancing problem. Qin et al.
(26) use MBO to solve the stochastic DLBP. MBO has been
successfully applied to various optimization problems. For the
MCTDR in this work, we use expanded discrete migratory
bird optimizer (EDMBO) to solve it.

Compared to existing research, this work makes the follow-
ing contributions:

1) Considering the deterioration of disassembly tools due
to wear, high temperature, or corrosion during long-term
disassembly, this work provides a functional relationship
between disassembly tasks and tool usage time. Consid-
ering tool deterioration during large-scale disassembly,
this work proposes a tool replacement operation.

2) A new disassembly line layout, circular disassembly
line, is designed. Based on the issues raised in this
work, a model of MCTDR is established with the goal
of maximizing disassembly profits.

3) This work proposes EDMBO to solve the MCTDR. The
evolutionary process of migratory birds is designed to
enable the algorithm to find the optimal solution faster.

The rest of this article is organized as follows. In the
section II, MCTDR is described and a mathematical model
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is established. Section III introduces the process of EDMBO
algorithm. Section IV presents the comparative experimental
results. Section V summarizes the entire text.

II. PROBLEM DESCRIPTION

A. Content Description

This work investigates tool deterioration and disassembly
issues in large-scale scenarios. When many products require
disassembly, tool deterioration is inevitable. Traditional dis-
assembly line layouts, such as linear, U-shaped, and parallel,
are limited by space and workstation cycle time, resulting in
tasks not being allocated to suitable workstations, exacerbating
the impact of tool deterioration on efficiency. The circular
disassembly line layout breaks these limitations. Workstations
in the circular disassembly line are arranged in a circular
pattern, allowing parts not yet disassembled to move in a loop
until a suitable position is found.

In the actual disassembly process, task execution time can
increase due to tool wear and worker fatigue, a situation
referred to as the deterioration phenomenon. When many
EOL products require disassembly, tool wear can exacerbate
task deterioration. Therefore, this work introduces a tool
replacement operation to replace worn tools at appropriate
times, reducing the impact of tool wear on task execution time
and increasing profits.

To represent the tool replacement operation in the disas-
sembly scheme, this work establishes a set of virtual tasks
corresponding to the types of tools required for disassembly.
Each virtual task corresponds to a type of disassembly tool.
Executing a virtual task equates to performing a tool replace-
ment operation.

Fig. 2 presents a schematic diagram of the tool replacement
operation for a refrigerator. The blue tasks represent normal
disassembly tasks, the orange tasks represent virtual tasks, and
the number on each task indicates the disassembly tool used.
Two normal disassembly tasks on workstation 2 require the use
of tool 1. Due to tool deterioration, using tool 1 for the second
normal disassembly task extends disassembly time, increasing
costs. To reduce the impact of tool deterioration on efficiency,
this work adds a virtual task for replacing tool 1 between these
two normal disassembly tasks, promptly replacing tool 1.

B. Disassembly Precedence Graph

The disassembly precedence graph is an invaluable tool
in product design and engineering. It identifies the most
efficient sequence for dismantling a product. Analyzing the
graph determines the order in which subassemblies should be
removed, enabling the effective disassembly of EOL products.
Removing subassemblies in an optimal sequence reduces the
likelihood of damage to individual subassemblies and facili-
tates the identification and separation of reusable components.
Therefore, this work uses the disassembly precedence graph
to describe the disassembly information of the product.

The disassembly precedence graph typically consists of
nodes representing disassembly tasks and directed edges indi-
cating the sequence in which these tasks should be performed.

Fig. 2. Refrigerator tool replacement operation schematic.

Fig. 3. Disassembly precedence graph of the refrigerator.

Following the directed edges in the graph allows the correct
and efficient disassembly of required subassemblies.

For example, Fig. 3 depicts the disassembly precedence
graph of a refrigerator. Squares represent disassembly tasks,
and directed edges indicate their disassembly priority. The
graph shows that task 1 must precede task 8. Task 8 must
be completed before executing task 9 or task 10.

In order to store the product information into the computer,
we design a precedence matrix 𝑃 = [𝑝𝑔

𝑖 𝑗
] and a resource

association matrix 𝐷 =
[
𝑑
𝑔

𝑖𝑟

]
.

1) Precedence matrix
The precedence matrix 𝑃 = [𝑝𝑔

𝑖 𝑗
] is used to describe the

precedence relation between the current disassembly task 𝑖

and other disassembly tasks 𝑗 in product 𝑔. It is defined as:

𝑝
𝑔

𝑖 𝑗
=

{
1, if task 𝑖 is executed before task 𝑗 in product 𝑔;
0, otherwise.

The disassembly precedence graph of the product indicates
the precedence relationship between disassembly tasks, which
can be represented using a precedence matrix. For example,
Fig. 3 illustrates:

[𝑝1
11]=0, [𝑝1

18]=1, [𝑝1
89]=1.

2) Resource association matrix
Resource association matrix 𝐷 =

[
𝑑
𝑔

𝑖𝑟

]
is used to describe the

use relationship between disassembly task 𝑖 and disassembly
tool 𝑟 in product 𝑔, which is defined as:
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𝑑
𝑔

𝑖𝑟
=

{
1, if tool 𝑟 is required to perform task 𝑖 in product 𝑔;
0, otherwise.

Each workstation in the disassembly line is equipped with
various numbered tools required for product disassembly. The
resource association matrix identifies the relationship between
tasks and tools when a task is assigned to a workstation,
allowing the corresponding tools to perform the disassembly
task. Table I illustrates the relationship between tasks and tools
for disassembling the refrigerator. From Table I, it is evident
that tool 3 is required for task 1, and tool 1 is required for
task 2.

In order to establish a single objective circular disassembly
line model, we make the following assumptions:

1) Matrices 𝑃 and 𝐷 are known.
2) The deterioration coefficient of each disassembly tool is

known.
3) The number of workstations is limited.
4) The open workstation is assigned at least one disassem-

bly task.
5) The time spent performing the disassembly task is

linearly related to the use time of the disassembly tool.
6) The deterioration cost per unit time and the normal

execution time and execution cost of each disassembly
task are known.

C. Mathematical Model

We establish a mathematical model for the problem pro-
posed in this article. The notations and decision variables in
the mathematical model are defined as follows:

Sets:

G set of products,G = {1, 2, . . . , 𝐺},where G is the
number of products.

W set of workstations,W = {1, 2, . . . ,𝑊},where W is the
number of workstations.

K set of locations,K = {1, 2, . . . , 𝐾},where K is the number
of locations on the workstation.

R set of disassembly tools,R = {1, 2, . . . , 𝑅},where R is
the number of tools.

I𝑔 the set of tasks in product 𝑔.
I𝑐𝑜𝑛𝑔,𝑖 set of tasks that conflict with task 𝑖 in product 𝑔.

I𝑝𝑟𝑒
𝑔,𝑖

immediately preceding task set for task 𝑖 in product 𝑔.

TABLE I Relationship between Tasks and Tools.

Task index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Tool number 3 1 2 3 2 1 2 2 3 1 2 2 3 1 ...

Parameters:

𝑖, 𝑗 task indexes.
𝑔 product index,𝑔 ∈ G.

𝑤 workstation index,𝑤 ∈ W.

𝑘 location index,𝑘 ∈ K.

𝑟 disassembly tool index,𝑟 ∈ R.

𝑇
𝑔

𝑤,𝑖
normal disassembly time of task 𝑖 in product 𝑔 on

workstation 𝑤.
𝛼
𝑔

𝑤,𝑖
deterioration coefficient of processing task 𝑖 in product 𝑔

on workstation 𝑤.
𝑉
𝑔

𝑖
the value of performing the 𝑖-th task of product 𝑔.

𝑐 deterioration cost per unit of time.
𝑐
𝑔

𝑖
disassembly cost of task 𝑖 in product 𝑔.

𝑐𝑊 fixed cost of opening the workstation.
𝑅
𝑔

𝑖
attribute of task 𝑖 in product 𝑔.

Decision variables:

𝑆
𝑔

𝑤,𝑖,𝑟
the time that tool r on the 𝑤-th workstation has been

used before task 𝑖 in product 𝑔 is executed.
𝑇
𝑔

𝑖,𝑤,𝑘
the start time of task 𝑖 in product 𝑔 at the 𝑘-th location

on the 𝑤-th workstation.

𝑇
′
𝑔,𝑤,𝑖 actual disassembly time of task 𝑖 in product 𝑔 on the

𝑤-th workstation.

𝑇𝐷
𝑔,𝑤,𝑖 deterioration time of task 𝑖 in product 𝑔 on the

𝑤-th workstation.

𝑥
𝑔

𝑖,𝑤,𝑘
=


1, if task 𝑖 in product 𝑔 is executed at 𝑘-th

position on workstation 𝑤;
0, otherwise.

𝑢𝑤 =

{
1, if workstation 𝑤 is used;
0, otherwise.

The following is a mathematical model to describe the
problem considered in this work.

𝑚𝑎𝑥
∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑉
𝑔

𝑖
𝑥
𝑔

𝑖,𝑤,𝑘
−
∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑐
𝑔

𝑖
𝑥
𝑔

𝑖,𝑤,𝑘
−∑︁

𝑤∈W

𝑐𝑊𝑢𝑤 −
∑︁
𝑔∈G

∑︁
𝑤∈W

∑︁
𝑖∈I𝑔

𝑐𝑇𝐷
𝑔,𝑤,𝑖

(1)

∑︁
𝑔∈G

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑥
𝑔

𝑖,𝑤,𝑘
≤ 1,∀𝑖 ∈ I𝑔 (2)

𝑢𝑤 ≥ 𝑢𝑤+1,∀𝑤 ∈ W (3)∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

𝑥
𝑔

𝑖,𝑤,𝑘
≤ 1,∀𝑤 ∈ W, 𝑘 ∈ K (4)

∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

𝑥
𝑔

𝑖,𝑤,𝑘
≥

∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

𝑥
𝑔

𝑖,𝑤,𝑘+1,∀𝑤 ∈ W, 𝑘 ∈ K (5)
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∑︁
𝑔∈G

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑥
𝑔

𝑖,𝑤,𝑘
+
∑︁
𝑔∈G

∑︁
𝑖′∈I𝑐𝑜𝑛

𝑔,𝑖

∑︁
𝑤∈W

∑︁
𝑘∈K

𝑥
𝑔

𝑖′ ,𝑤,𝑘
≤ 1,

∀𝑖 ∈ I𝑔

(6)

∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

∑︁
𝑘∈K

𝑥
𝑔

𝑖,𝑤,𝑘
≥ 𝑢𝑤 ,∀𝑤 ∈ W (7)

∑︁
𝑔∈G

∑︁
𝑖∈I𝑔

∑︁
𝑘∈K

𝑥
𝑔

𝑖,𝑤,𝑘
≤ 𝑀𝑢𝑤 ,∀𝑤 ∈ W (8)

𝑥
𝑔

𝑖,𝑤,𝑘
≤

∑︁
𝑔∈G

∑︁
𝑖′∈I𝑝𝑟𝑒

𝑔,𝑖

∑︁
𝑤′∈W

∑︁
𝑘′∈K

𝑥
𝑔

𝑖′ ,𝑤′ ,𝑘′ ,

∀𝑖 ∈ I𝑔, 𝑤 ∈ W, 𝑘 ∈ K

(9)

𝑇
𝑔

𝑖,𝑤,𝑘+1 ≥ 𝑇𝑔

𝑖′ ,𝑤,𝑘
+ 𝑇 ′

𝑔,𝑤,𝑖′ ,

∀𝑔 ∈ G, 𝑖, 𝑖′ ∈ I𝑔, 𝑤 ∈ W, 𝑘 ∈ K
(10)

𝑇
𝑔

𝑖,𝑤,𝑘
≥ 𝑇𝑔

𝑖′ ,𝑤′ ,𝑘′ + 𝑇
′
𝑔,𝑤′ ,𝑖′ + 𝑀

(
𝑥
𝑔

𝑖,𝑤,𝑘
+ 𝑥𝑔

𝑖′ ,𝑤′ ,𝑘′ − 2
)
,

∀𝑔 ∈ G, 𝑖 ∈ I𝑔, 𝑤, 𝑤
′ ∈ W, 𝑘, 𝑘 ′ ∈ K, 𝑖′ ∈ I𝑝𝑟𝑒

𝑔,𝑖

(11)

𝑆
𝑔

𝑤,𝑖,𝑟
≥ 𝑆

𝑔

𝑤, 𝑗,𝑟
+ 𝑇 ′

𝑔,𝑤, 𝑗𝑑
𝑔

𝑗,𝑟
+ 𝑀

(
𝑥
𝑔

𝑖,𝑤,𝑘
+ 𝑥𝑔

𝑗,𝑤,𝑘−1 − 2
)

− 𝑀
(
𝑅
𝑔

𝑖
𝑑
𝑔

𝑖,𝑟
+ 𝑅𝑔

𝑗
𝑑
𝑔

𝑗,𝑟

)
,

∀𝑔 ∈ G, 𝑖, 𝑗 ∈ I𝑔, 𝑤 ∈ W, 𝑟 ∈ R, 𝑘 ∈ K

(12)

𝑇 ′
𝑔,𝑤,𝑖 ≥ 𝑇

𝑔

𝑤,𝑖
+ 𝑇𝐷

𝑔,𝑤,𝑖 + 𝑀
(
𝑥
𝑔

𝑖,𝑤,𝑘
− 1

)
,

∀𝑔 ∈ G, 𝑖 ∈ I𝑔, 𝑤 ∈ W, 𝑘 ∈ K
(13)

𝑇𝐷
𝑔,𝑤,𝑖 ≥ 𝑑

𝑔

𝑖,𝑟
𝛼
𝑔

𝑤,𝑖
𝑆
𝑔

𝑤,𝑖,𝑟
,∀𝑔 ∈ G, 𝑖 ∈ I𝑔, 𝑤 ∈ W, 𝑟 ∈ R (14)

Objective function (1) maximizes disassembly profits. Con-
straint (2) ensures each task is executed at most once. Con-
straint (3) ensures workstations are activated in sequence.
Constraint (4) ensures at most one task is performed at each
location. Constraint (5) indicates positions in the workstation
must be assigned tasks in sequence. Constraint (6) indicates for
conflicting disassembly tasks, at most one can be performed.
Constraints (7) and (8) ensure open workstations must assign
tasks, and unopened workstations cannot assign tasks. Con-
straint (9) ensures the task precedence relationship is satisfied
between disassembly tasks. Constraint (10) ensures the task
at the next position cannot be executed until the task at the
previous position is completed. Constraint (11) ensures the
immediate predecessor of task 𝑖 is executed before task 𝑖.
Constraint (12) represents the time each tool is used before
disassembly task 𝑖 is performed. Constraint (13) represents the
actual disassembly time of task 𝑖, which equals the normal
disassembly time of task 𝑖 plus its deterioration time at the
workstation. Constraint (14) represents the deterioration time
of the task at the workstation.

III. PROPOSED ALGORITHM

A. Expanded Discrete Migratory Bird Optimizer

MBO originates from observing and researching migra-
tory birds’ behavior. MBO simulates various behaviors of
birds during migration, including flight patterns, environmental
adaptability, and interactive behaviors. The basic idea of this
algorithm views the search space as a set of potential solutions
for optimization problems and uses a strategy to simulate the
selection and interaction behavior of migratory birds during
migration to find the optimal solution. Specifically, MBO
involves three key steps: population initialization, population
update, and leader bird replacement. Population initialization
and leader bird replacement construct the initial and new
generation solution sets. Population update evaluates and sorts
solutions in the current population, adjusting the search strat-
egy accordingly.

The main feature of MBO is neighborhood solution sharing,
a strategy introduced during the population update stage. It
allows individuals to exchange information within their neigh-
borhoods, thereby improving search efficiency and quality.
Neighborhood solution sharing is an effective mechanism. It
helps algorithms escape local optima and explore a wider
range of regions in the search space. It reduces redundant
operations in the search space, making the algorithm more
efficient and stable. Neighborhood solution sharing is an
essential component of MBO algorithms, producing significant
optimization effects in various practical applications.

Compared to other popular optimization algorithms, MBO
exhibits a higher rate of convergence and superior global
optimization capability. Therefore, we select EDMBO, after
discretizing and optimizing MBO, to solve the MCTDR prob-
lem presented in this work.

In EDMBO, to clearly describe the problem, we design
a two-stage encoding method to represent the solution. We
design a crossover operator and four mutation strategies to
guide the population evolution in the desired direction, helping
migratory birds generate neighborhood solutions. To increase
population diversity, we conduct mutation operations with
follower birds to further explore better solutions. The detailed
steps of EDMBO are shown in Algorithm 1.

B. Encoding and Decoding

When solving the DLBP, encoding and decoding are crucial
concepts. For the DLBP considering tool replacement in this
work, we aim to obtain the optimal solution that includes the
execution sequence of tasks and their allocation on worksta-
tions. Therefore, we design a binary encoding 𝑋 (𝑥1, 𝑥2) to
represent the disassembly plan, where 𝑥1 is the task sequence
and 𝑥2 is the workstation assignment for each task. As shown
in Fig. 4, the task sequence of this disassembly plan is 𝑥1 =
(1, 47, 4, 7, 11, 2, 12, 20), and the workstation sequence is 𝑥2

= (1, 1, 1, 1, 2, 2, 2). Tasks 1, 47, 4, 7, and 11 are assigned
to workstation 1, while tasks 2, 12, and 20 are assigned to
workstation 2.

Decoding is the process of converting encoded solutions
into practical solutions. Based on the algorithm, we can derive
the disassembly task sequence and workstation sequence to
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Algorithm 1 Expanded Discrete migratory bird optimizer

Input: population size, number of iterations
Output: the best solution set 𝑋

Begin
Initialize population.
Construct a 𝑉 formation queue.
while (𝑔 <maximum number of iterations) do

for (𝑘 = 0; 𝑘 <population size; 𝑘 + +) do
Individual evolution.

end for
Replacement of the leader bird.
𝑔 = 𝑔 + 1
Update 𝑋 .

end while
return 𝑋

End

determine the disassembly profit of the solution. Encoding
and decoding techniques are particularly important in solving
DLBP, as they help algorithms better adapt to the problem’s
characteristics, reduce computational complexity, and improve
efficiency and accuracy.

The abstract encoding scheme becomes concrete through
the following worked example, which also illustrates how
precedence constraints are enforced during solution decoding:

To concretize the encoding/decoding process, consider a
refrigerator disassembly instance with the following encoded
solution:

𝑥1 = (2, 5, 1, 8, 14) (Task sequence)

𝑥2 = (1, 1, 2, 2, 3) (Workstation assignments)

Step 1: Decoding to Disassembly Plan
1) Task Allocation:

• Workstation 1: Tasks 2, 5 (Tools: 1, 2)
• Workstation 2: Tasks 1, 8 (Tools: 3, 2)
• Workstation 3: Task 14 (Tool: 1)

2) Precedence Validation: Check against Fig. 3’s prece-
dence matrix 𝑃:

• Task 1 ≺ Task 8 (satisfied)
• Task 2 ≺ Task 5 (violated, triggers repair in Step 2)

Step 2: Priority Repair During Crossover When precedence
violations occur (e.g., Task 5 before Task 2), the algorithm:

• Identifies conflict via 𝑝𝑝𝑟𝑒
𝑔,5 = {2} (from Section II.B)

• Swaps positions to get valid sequence: (2, 5, 1, 8, 14) →
(2, 1, 5, 8, 14)

Step 3: Profit Computation Using Eq. (1) with parameters
from Table I. This example demonstrates how encoded solu-
tions map to executable plans while maintaining precedence
constraints.

C. Population Initialization and Construction of 𝑉-shaped
Queues

The initialization of the population in EDMBO significantly
impacts the search ability and final results of the algorithm.
This work uses a method of randomly generating a certain

1

1

Task sequence

Workstation number

47 4 7 11 2 12 20

2

Fig. 4. Encoding structure.

number of solutions for the initial population, ensuring these
solutions are uniformly distributed in the solution space.

According to EDMBO characteristics, after generating a
population, individuals need sorting to construct a 𝑉-shaped
queue. First, sort individuals based on target value, then
select the best individual as the leader bird. The remaining
individuals are placed in left and right queues according to
their target values, forming a 𝑉-shape. The constructed 𝑉-
shaped queue helps migratory bird populations explore the
search space and find the optimal solution globally, improving
EDMBO’s search efficiency and accuracy.

D. Individual Evolution

In EDMBO, leader and follower birds evolve individually
using neighborhood solutions. A neighborhood solution is a
candidate solution that explores the surrounding environment.
By comparing the target value of the neighborhood solution
with the current optimal solution, it is determined whether the
migratory bird is replaced or maintains its original position.

The leader bird generates its neighborhood solution through
a crossover operation with the left and right follower birds,
then performs a neighborhood search. If a better solution is
found in the neighborhood, the leader bird is replaced with
the optimal neighborhood solution. After the search, unused
neighborhood solutions of the leader bird are transferred to
the left and right follower birds.

The left and right migratory birds generate neighborhood
solutions through crossover with subsequent birds and perform
a neighborhood search between their solutions and those not
used by the previous bird. If a bird finds a better solution than
its current one, it replaces its current solution with the optimal
one. After the search, unused solutions of the current bird are
transferred to the next bird.

The steps of the crossover operation are shown in Fig. 5.
First, select the current bird and its subsequent bird as parent
1 and parent 2, respectively. Then, randomly generate a binary
code equal in length to the disassembly sequence. Parents 1
and 2 generate new individuals based on the binary code.
In binary encoding, 0 represents selecting the task from the
current bird, while 1 represents selecting the task from the
subsequent bird.

To facilitate neighborhood solutions in aiding individual
evolution, we select high-quality individuals as mutation can-
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1 47 4 7 2 5 18 23

1 0 1 0

2 47 18 7

Parent 2Parent 1

Child

Mask

11 30

0

11

Fig. 5. Process of crossover.

1 47 4 7Task sequence

Mutate

1 47 4 7New task sequence 11 2 12

Fig. 6. The first mutation strategy.

didates within a neighborhood. We design four mutation strate-
gies. When generating neighborhood solutions, we randomly
select one to use for new individuals. The four mutation
strategies are as follows:

1) As shown in Fig. 6, new individuals generated through
crossover operations sometimes have shorter disassem-
bly task sequences. To address this, we randomly add
tasks to the current sequence, ensuring the total number
of tasks is not exceeded.

2) As shown in Fig. 7, the order of disassembly tasks
in a sequence can impact the disassembly results. We
randomly select a disassembly task from the sequence
of the current individual, and then insert it into a new
position while ensuring that the disassembly precedence
relationship is maintained.

3) As illustrated in Fig. 8, during the disassembly process,
the performance of the disassembly tool gradually de-
teriorates. To mitigate the impact of tool wear on task
disassembly time, tools at the workstation need timely
replacement. Given the potential need for multiple tool
replacements, we randomly insert a tool replacement
operation into the current task sequence.

4) Similarly, as depicted in Fig. 9, to prevent arbitrary tool
replacements during disassembly, we randomly elimi-
nate a tool replacement operation from the current task
sequence.

E. Replacement of Leader Bird

After a specified number of evolutions for leader and
follower birds, the initial population and all new individuals
are assembled into a new set. To enhance population diversity,
follower birds from the initial population undergo mutation
and are incorporated into this new set. Subsequently, individ-
uals in the new set are sorted, the top n optimal individuals are

1 47 4 7Task sequence

Mutate 

New task sequence

11 2 12

1 47 7 4 11 2 12

Select

Fig. 7. The second mutation strategy.

1Task sequence 47 4 7 11 2 12 20

1New task sequence 47 4 7 11 48 2 12 20

48

Tool replacement 

operation

Add

Fig. 8. The third mutation strategy.

selected to form a new generation population, and a V-shaped
queue is constructed.

To quantify the individual contributions of each mutation
strategy, we disable one strategy at a time while keeping the
others active, using Case 5 as a baseline. The results are shown
in Table II.

The most pronounced decrease in profit (7.7%) was ob-
served when mutations3 were disabled, validating their key
role in reducing the cost of deterioration. In contrast, removing
mutation 4 has a minimal impact (2.3% decrease), suggesting
that its primary function is to preserve diversity rather than di-
rectly optimize profits. Interestingly, while disabling mutation
1 increases the runtime by 21%, it also reduces the quality
of the solution, suggesting that this strategy has the dual role

1New task sequence 47 4 7 11 2 12 47

1Task sequence 47 4 7 11 48 2 12 47

Tool replacement 

operation

Delete

20

20

Fig. 9. The fourth mutation strategy.
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TABLE II Performance impact of removing individual
mutation strategies

Mutation Profit Time (s) Workstations Tool
strategies Replacement

No remove 1373 42 4 3
1 1295 (-5.7%) 51 (+21%) 5 4
2 1318 (-4.0%) 47 (+12%) 4 3
3 1267 (-7.7%) 39 (-7%) 5 0
4 1342 (-2.3%) 44 (+5%) 4 4

of accelerating convergence and getting rid of local optima.
These findings justify the inclusion of all four strategies, even
though their activation probabilities are based on the adaptive
activation probabilities of the problem phases.

IV. EXPERIMENTAL STUDIES

A. Test Instances

TABLE III Product Set

Product Num of tasks Num of required tools

Washing machine 13 3
Refrigerator 25 3

Radio 30 3
Hammer drill 46 3

TABLE IV Case Information

Case Product Num of tasks
Washing machine Refrigerator Radio Hammer drill

1 1 0 0 0 13
2 0 1 0 0 25
3 2 0 0 0 26
4 0 0 1 0 30
5 0 0 0 1 46
6 0 0 2 0 60
7 0 0 1 1 76

We use the IBM ILOG CPLEX solver to validate the
mathematical model and record the optimal solutions for each
experimental case. Then, we use EDMBO to solve the same
cases and compare the solutions obtained by CPLEX and
EDMBO. The operating environment is Windows 10, with
an AMD A6-9210 Radeon R4, 5 Compute Cores 2C+3G
2.40GHz CPU.

We select the washing machine, refrigerator, radio, and
hammer drill as the products for disassembly. Given the focus
on a multi-product DLBP in this study, these four products
are paired to create various experimental scenarios for solving
the problem. Table III details the specific information for
each product, while Table IV presents the combinations of
experimental cases.

B. Analysis of Experimental Results

Circular disassembly lines can be used in a wide range
of disassembly scenarios. In this study, the radio is used as
the product and the number of workstations is 3. Fig. 10
visually shows the results of the experiment. With the same
number of stations and other parameters, circular disassembly

lines are no less efficient in terms of utilization and have an
advantage in terms of workstation load balance compared to I-
shaped and U-shaped disassembly lines, regardless of whether
the disassembly line is fully loaded or not, and regardless
of whether the product is complex or not. Load balancing
prevents overuse of the same tool, which slows the rate of
tool deterioration.

Fig. 10. Relative load of workstations in different line types

Fig. 10 provides a quantitative comparison of workstation
load characteristics for different disassembly line layouts.
Fig. 10 shows three main patterns: the I-shaped disassembly
line exhibits a significant load imbalance, with workstation
3 consistently having a higher workload than workstation 1
due to the sequential nature of the task assignments. the
distribution of the U-shaped disassembly line layout improves,
but is still uneven. The circular disassembly line layout shows
nearly uniform utilization. This balance between efficiency and
robustness directly supports the tool degradation mitigation
strategy in Section IV-C.

We use CPLEX and EDMBO separately to solve each case,
with the maximum running time of CPLEX set to 4 hours.
The solution results obtained using CPLEX are presented
in Table V. For example, considering case 1 as detailed in
Table III, it involves 13 disassembly tasks and requires 3
types of tools. To accommodate these tool types, we introduce
corresponding virtual tasks: task 14 for replacing tool 1, task
15 for replacing tool 2, and task 16 for replacing tool 3. In case
1, tasks 1, 4, ..., and 13 are assigned to workstation 1. Task 14
appears twice, indicating two instances of tool 1 replacement.
The term ”Profit” denotes the proceeds generated from the dis-
assembly sequence, while ”Time” refers to the computational
time required by CPLEX to derive the sequence.

For each case, the solution obtained by CPLEX is catego-
rized into two states. ”Optimal” indicates that the disassem-
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TABLE V CPLEX Solutions

Case Disassembly sequence Profit Solution status Time(s)

1 (1, 4, 14, 9, 14, 13) 1167 optimal 132.93
2 - - - 14400
3 - - - 14400

4
(31, 1, 31, 31, 31, 31, 4, 16)
→ (30) → (32, 28) → (31)

→ (3, 33, 5, 33, 29, 32, 32, 32, 33, 9)
526 feasible 14400

5 - - - 14400
6 - - - 14400
7 - - - 14400

bly sequence obtained is the optimal solution at that time.
”Feasible” indicates that the disassembly sequence obtained is
not optimal but remains feasible within the maximum running
time. The results from applying CPLEX to solve various cases
highlight the high complexity of the model proposed in this
work. For small-scale cases, CPLEX can either find an optimal
solution or a feasible solution within the specified time limit.
However, as the case scale increases, CPLEX may struggle to
find even a feasible solution within the given time constraints.

The solution results based on EDMBO are presented in Ta-
ble VI. Compared to CPLEX, EDMBO consistently provides
feasible solutions across cases of varying scales. In instances
where CPLEX finds the optimal solution, EDMBO achieves
comparable results in a shorter time. Moreover, for cases
where CPLEX yields feasible solutions or fails to find any,
EDMBO consistently delivers higher quality solutions within
shorter computational periods.

TABLE VI EDMBO Solutions

Case Disassembly sequence Profit Time(s)

1 (1, 4, 14, 9, 14, 13) 1167 0.255

2

(1, 2) → (14, 8) → (3, 10, 11)
→ (9, 4, 18) → (12, 20, 13, 5)
→ (23, 19) → (21, 16, 17)

→ (15, 22) → (6, 7, 26, 25, 24)
514.5 13.102

3 (1, 27, 14, 27, 4, 9, 27, 16, 27, 19, 27, 24, 13) 2340 4.396
4 (2, 11, 33, 12, 31, 5, 16, 33, 30) → (28, 29, 9) 576 7.289

5
(1, 47, 4, 7, 11) → (2, 12, 20)

→ (21, 18, 49, 30) → (31, 13, 22) → (37, 28)
→ (42, 46, 32) → (38, 23, 43)

1373 11.241

6 (1, 40, 34) → (3, 4, 5) → (6, 61, 7, 35, 8)
→ (62, 46, 60, 63, 9, 30) → (58, 59, 39) 1153 14.117

7

(31, 32, 11) → (34, 37, 41) → (14, 19, 25)
→ (42, 51) → (27) → (50, 79, 48, 61, 43)

→ (29, 52, 78) → (60, 58) → (67)
→ (9, 62, 77) → (68, 72, 53) → (73, 30, 76)

1933 16.873

The essence of this study involves integrating tool replace-
ment operations into disassembly task assignments. Using case
4 as a focal point, we investigate task allocation scenarios
with and without tool replacement operations, with results
depicted in Fig. 11. A comparison reveals that incorporating
tool replacement operations mitigates the impact of tool dete-
rioration, leading to fewer active workstations and enhanced
disassembly profits.

C. Analysis of EDMBO Performance

To evaluate EDMBO’s performance in solving MCTDR, we
compare it with FOA (27), WOA (28), and SSA (29) using
independent experiments on our selected test cases. Each algo-
rithm undergoes 20 experiments where we record the optimal

values per generation. To visually assess convergence rates
and solution quality, we compute the average optimal value
across these experiments and plot the iteration process for each
algorithm in Fig. 12. The horizontal axis denotes the number of
iterations, while the vertical axis represents the optimal target
value per generation. From the iteration curves shown in Fig.
12, it is evident that EDMBO achieves faster convergence rates
and consistently delivers higher-quality solutions compared to
FOA, WOA, and SSA.

The computational efficiency of EDMBO is also reflected
in its resource consumption. This efficiency stems from two
architectural choices; (1) the shared neighborhood solution
pool reduces redundant population storage, and (2) discrete
coding has little memory difference compared to continuous
space algorithms such as WOA. This also allows EDMBO
to handle more task instances without failures, which is a
crucial advantage for real-world disassembly scheduling, since
industrial controllers typically have limited RAM. It is worth
noting that EDMBO optimizes the memory time tradeoffs and
reduces memory usage by 15% compared to SSA, but the
convergence speed does not suffer as a result.

In addition to evaluating the algorithm’s convergence rate
and solution quality, we also assess its stability. We record
the optimal, worst, and average values obtained from 20
experiments for each algorithm, as detailed in Table VII. The
table shows that EDMBO consistently achieves better solution
quality, with higher worst and average values compared to
other algorithms. This comparison across different metrics in-
dicates that EDMBO demonstrates robust stability in tackling
problems. In summary, EDMBO proves to be well-suited for
addressing MCTDR.

As shown in Table VIII, incorporating tool replacement op-
erations reduces active workstations from 5 to 3 and increases
profit by 18%. The deterioration time of tools decreases by
37.5%, validating that timely replacement mitigates efficiency
loss caused by wear. Fig. 11 further illustrates the task
assignment: replacing Tool 1 between Tasks 2 and 12 resets
its service time 𝑆

𝑔

𝑤,𝑖,𝑟
, preventing cumulative deterioration

effects.

V. CONCLUSION

This article proposes a circular disassembly line balancing
model that incorporates tool replacement and addresses the
impact of disassembly tool deterioration on efficiency and
cost. The model aims to maximize disassembly profits while
considering both the deterioration and replacement costs of
disassembly tools. To handle this, we introduce virtual tasks,
whose number corresponds to the types of tools needed
for product disassembly; executing a virtual task signifies
replacing the associated tool type. To validate the proposed
model, we utilize CPLEX to ensure its correctness. For solv-
ing the MCTDR, we introduce enhanced dynamic migratory
bird optimization. The effectiveness of EDMBO in solving
MCTDR is demonstrated by conducting experiments on three
different scales, large, medium and small, comparing results
with other intelligent optimization algorithms.

Our next step involves integrating additional optimization
objectives within circular disassembly lines and delving deeper
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Normal tasks Virtual tasks

Fig. 11. Assignment of tasks for with and without tool replacement operations of Case 4.

[] []

[] []

Fig. 12. Iterative comparison. (a) Case 3. (b) Case 4. (c) Case 6. (d) Case 7.

TABLE VII Experimental Results of Stability Test.

Case Optimal Worst Average

EDMBO FOA SSA WOA EDMBO FOA SSA WOA EDMBO FOA SSA WOA

1 1167 1167 1167 1167 1147 1137 1069 1075 1157 1152 1118 1121
2 514.5 515 465 499 429 410 369 393.5 471.75 462.5 417 446.25
3 2340 2340 2312.5 2324 2228 2197 2112 2105 2284 2268.5 2212.25 2214.5
4 576 576 568 566 554 537 531 533 565 556.5 549.5 549.5
5 1373 1363 1318 1333 1267.5 1272 1262 1231 1320.25 1317.5 1290 1282
6 1153 1150 1099 1131 1062 1061 1042 1038 1107.5 1105.5 1070.5 1084.5
7 1933 1928 1847 1916 1764.5 1768 1729 1715.5 1848.75 1848 1788 1815.75



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING 11

TABLE VIII Comparison of Disassembly With and Without
Tool Replacement Operations (Case 4).

Metric Without With ImprovementReplacement Replacement

Active Workstations 5 3 40% ↓
Disassembly Profit 526 576 9.5% ↑

Tool Deterioration Time 120 75 37.5% ↓
Workstation Utilization 68% 89% 21% ↑

into challenges associated with tool deterioration. Further-
more, we aim to explore advanced intelligent optimization
algorithms tailored for addressing DLBP.
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[3] M. D. Toksarı and E. Güner, “Minimizing the earliness/tardiness costs
on parallel machine with learning effects and deteriorating jobs: a mixed
nonlinear integer programming approach,” The International Journal of
Advanced Manufacturing Technology, vol. 38, pp. 801–808, 2008.

[4] Y. Fu, M. Zhou, X. Guo, and L. Qi, “Artificial-molecule-based chemical
reaction optimization for flow shop scheduling problem with deteriorat-
ing and learning effects,” IEEE Access, vol. 7, pp. 53 429–53 440, 2019.

[5] D.-L. Yang and W.-H. Kuo, “Some scheduling problems with deterio-
rating jobs and learning effects,” Computers & Industrial Engineering,
vol. 58, pp. 25–28, 2010.

[6] C. Miao, F. Kong, J. Zou, R. Ma, and Y. Huo, “Parallel-machine
scheduling with step-deteriorating jobs to minimize the total (weighted)
completion time,” Asia-Pacific Journal of Operational Research, vol. 40,
2023.

[7] J.-B. Wang, D.-Y. Lv, S.-Y. Wang, and C. Jiang, “Resource allocation
scheduling with deteriorating jobs and position-dependent workloads,”
Journal of Industrial Management Optimization, vol. 19, pp. 1658–1669,
2023.

[8] T. Xia, G. Shi, G. Si, S. Du, and L. Xi, “Energy-oriented joint opti-
mization of machine maintenance and tool replacement in sustainable
manufacturing,” Journal of Manufacturing Systems, vol. 59, pp. 261–
271, 2021.

[9] W. Xu and L. Cao, “Optimal tool replacement with product quality de-
terioration and random tool failure,” International Journal of Production
Research, vol. 53, pp. 1736–1745, 2015.

[10] M. S. Salehi Mir, J. Rezaeian, and H. Mohamadian, “Scheduling parallel
machine problem under general effects of deterioration and learning
with past-sequence-dependent setup time: heuristic and meta-heuristic
approaches,” Soft Computing, vol. 24, pp. 1335–1355, 2019.

[11] A. Gungor and S. M. Gupta, “A solution approach to the disassembly
line balancing problem in the presence of task failures,” International
journal of production research, vol. 39, pp. 1427–1467, 2001.

[12] Altekin and F. Tevhide, “A piecewise linear model for stochastic
disassembly line balancing,” IFAC-PapersOnLine, vol. 49, pp. 932–937,
2016.
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