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A Partition Stacking Classification Framework With
Oversampling for Quality Prediction of Aluminum

Alloy Ingots
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Abstract—As the raw material of aluminum alloy production,
the quality of aluminum alloy ingots has an important influ-
ence on the quality of final products. We study how to use
machine learning models to predict ingot quality by production
parameters. However, traditional machine learning models often
ignore upstream and downstream relationships and the data
imbalance in practical production. In this paper, to solve the
above problems, knowledge about the aluminum alloy melting-
casting process is applied and the relationship between pro-
cess parameters of melting-casting process and ingots quality
is modeled via a partition classification framework based on
standard stacking. The data is divided into three parts according
to different processes, and then sequentially input the framework
in process order. The major difference between our method and
the standard stacking is that, at the base-level, the classifiers’
predictions for each part are fused with the next part as the
new input. After that, the output of the last part is then fused
with all the data for training at the meta-level. We carefully
compare the performance of Synthetic Minority Oversampling
Technique (SMOTE) variants, and an oversampling method
called Polynomial Fitting SMOTE is used in the classification
framework to deal with the imbalance problem. We apply our
proposed method and obtain the best classification results on
aluminum alloy melting-casting data. We also show the validity
of the combination of Polynomial Fitting SMOTE and standard
stacking on public datasets.

Key Words—Aluminum alloy ingot, Quality prediction, Stack-
ing, Polynomial Fitting SMOTE, Data partition.

I. INTRODUCTION

ALUMINUM alloy is one of the most commonly used
nonferrous materials in the industry. Aluminum alloys

are light materials with a high strength-to-weight ratio com-
bined with a relatively low melting point, good castability,
and low casting shrinkage [1]. Because of these characteristics,
they play a very important role in some high-technology fields
such as aerospace, transportation, automobile, and in everyday
industries such as food packaging [2]. Aluminum production
and consumption keep growing steadily at 4-5% a year [3].
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The quality of aluminum alloy products is always the most
important factor for enterprises. The performance of aluminum
alloy products is closely related to the quality of ingots, it can
be said that the quality of ingots determines the final product
[4]. If the ingots are not up to standard because of defects, then
several remedial actions can be taken: conditioning, adjustment
of normal operation, reapplication, or scrapping [5]. Any
remedial measures result in extra costs.

The production of aluminum alloy ingots is a multi-stage
process. As shown in Figure 1, the melting-casting process
is divided into three stages. Raw materials are first melted in
melting furnaces. The resulting liquid aluminum is transferred
to holding furnaces for refining. Then liquid aluminum is
processed through degassing and filtering devices (SNIF and
CFF), cast in a casting machine, and finally formed into ingots.
Therefore, the quality of ingots results from the combined
effect of each stage. It is important to understand the impact of
process parameters on quality. During the whole process, the
temperature of the liquid aluminum can significantly affect the
quality of the final product. If the pouring temperature is not
sufficiently higher than the liquidus temperature, the fluidity
of liquid aluminum deteriorates and defects such as porosity
or insufficient filling are likely to occur. If the temperature
of liquid aluminum is superheated over 800◦𝐶, the oxidation
reaction at the melt surface is promoted with the increase
of the impurities or cracks. Besides, the dissolved hydrogen
content in liquid aluminum should also be carefully controlled.
Remarkably, hydrogen gas can be dissolved in the liquid
state of aluminum. The dissolved hydrogen in the molten
aluminum remaining after solidification can cause defects such
as micro-porosity. Also, the dissolved hydrogen diffused into
the bifilm gap can work as crack initiators [6]. According to
the process knowledge, we consider three major equipments
that are vitally important — melting furnace, holding furnace,
and casting machine.

It is important to build a relationship model of process
parameters and the quality of ingots so that the ingot quality
can be predicted prior to production by inputting a specific set
of process parameters. Some empirical and numerical models
can provide an understanding of the relationship between
parameters and quality, but the accuracy is not high. They
usually reflect the relationship between ingot quality and a
single parameter, which cannot describe the comprehensive
law of multiple process parameters on ingot quality.

In recent years, machine learning models have been used
as an alternative way to successfully predict aluminum al-
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Fig. 1. Melting-casting flow chart of aluminum alloy.

loy properties. Ingots quality prediction is a typical binary
classification problem of machine learning. Unlike general
classification problems, aluminum alloy ingot data has the
following characteristics due to the specificity of industrial
production:

1) Data is imbalanced, that is a dataset in which qualified
ingots have a much greater number of samples than
unqualified ingots. Although unqualified ingots may
cause great losses, the number of them is tiny. The class
to which qualified ingots belong is called the majority
class, while the class to which unqualified ingots belong
is called the minority class [7]. The imbalance problem
is common in the industry and particularly challenging
to classify with traditional classification models.

2) The data comes from multiple processes and may be
suitable for different classifiers. According to the pro-
duction process, the upstream process has a strong influ-
ence on the downstream process, thus a single classifier
may not reflect the upstream and downstream relations
in practical production.

In this paper, for the above characteristics of aluminum alloy
ingot data, we combine an oversampling approach with a novel
stacking classification framework. Oversampling is a data-
level technique to deal with data imbalance problems [8]. Poly-
nomial Fitting Synthetic Minority Oversampling Technique
(PFSMOTE) [9] performs well on multiple datasets. This
method finds appropriate samples among minority samples
in the training set and then adds synthetic samples using
a polynomial fitting function. We use four fitting functions
to generate samples and randomly add them to the dataset
until the majority and minority samples reach the desired
proportion. Then a stacking ensemble framework is con-
structed. Stacking [10] is a non-linear ensemble predictor
in order to achieve higher prediction accuracy and reduce
generalization error based on two levels, which are called base-
level and meta-level respectively. We design a novel stacking
framework that conforms to the production process to describe
the upstream and downstream relations. It partitions the data
by different process stages and only trains one part at a time.
At base-level, the output of each part is fused with the process
parameters of the next part and used together as the input
for the next training. The output of the last part and all
parameters are used as the input to meta-classifier training.

Meta-classifier gives the final classification. Data partition
not only increases the diversity of ensemble learning but
also conforms to the production processes of aluminum alloy
ingots. The experimental results show that our classification
framework can predict the quality of aluminum alloy ingots
accurately when the number of unqualified ingots is small.
The contributions of this article are as follows:

1) In order to solve data imbalance problems, four fitting
functions are combined to generate minority samples. It
is experimentally found to be suitable for dealing with
the problems in this paper.

2) A novel classification framework is proposed based on a
standard stacking ensemble learning model that explains
the melting-casting process.

The rest of this paper is organized as follows. In section
II, we review the related work. In Section III, details are
given on how the four fitting functions apply. A novel stacking
algorithm is proposed to improve the classification accuracy of
unqualified ingots. The results of the comparison experiment
are presented in Section IV. Finally, Section V concludes this
paper.

II. RELATED WORK

A. Machine Learning in Aluminum Alloy Production

Machine learning encompasses a broad range of algorithms
for modeling based on experiences and making accurate pre-
dictions. Machine learning tasks can be categorized as super-
vised, unsupervised, and reinforcement learning. Among them,
supervised learning is widely used in aluminum alloy produc-
tion, while unsupervised learning and reinforcement learning
are rarely studied. Supervised learning models generally form
predictions through a learned mapping 𝑓 (𝑥), which produces
an output 𝑦 for each input 𝑥 (or a probability distribution
over 𝑦 given 𝑥) [11]. Supervised learning tasks in aluminum
alloy production can be roughly divided into two categories:
regression [12] and classification [13]. Many different forms
of mapping f exist, such as Artificial Neural Network [14, 15],
Extreme Learning Machine [16] are used for regression and
Logistic Regression (LR) [17], k-Nearest Neighbors (kNN)
[13], Decision Tree (DT), Support Vector Machine (SVM) [18]
are used for classification. As machine learning paradigms,
ensemble learning [6, 19] and deep learning [20] are also
increasingly being utilized to improve the positive effect.
Deep learning often requires large amounts of data. It is not
appropriate for our problem. We consider ensemble learning
to handle the binary classification task.

In ensemble learning, the combination of different weak
classifiers can provide complementary information [21]. It
is known that this kind of solution can be used for the
improvement of the overall classification from the perspective
of accuracy as well as generalization [22].

To generate an ensemble model, two important things
should be contemplated. First, sufficient diversity must be
introduced in ensemble learning. The second is to determine
the output of each single classifier and consider how to
integrate these outputs into one [23].
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Diversity is the degree to which classifiers make different
decisions on one problem. Empirical studies have shown that
a larger diversity results in a better recall for the minority but
harms the majority classes. When the accuracy is not high
enough, it increases the probability of classifying minority
samples [23, 24]. In ensemble learning, diversity can be
achieved from several aspects: 1) Using different training
datasets to train weak classifiers. 2) Using different training
parameters for different weak classifiers. 3) Using different
weak classifiers. In some common algorithms, such as bagging
[25] and boosting [26], their weak classifiers are usually DTs.
Such ensemble models are also called homogeneous. Each tree
is trained by selecting different samples or different features.
After training, different model parameters are obtained for
each classifier. For another method to improve diversity, the
most common model is stacking.

Stacking is a well-known heterogeneous ensemble learning
model. Compared with bagging and boosting, stacking does
not manipulate the training set directly. Diversity is achieved
because different learning algorithms make different errors
in the same dataset. There are no uniform criteria for the
selection of classifiers. What kind of models to combine, or
even different architectures of the same model is used only
for a specific application [10, 27, 28].

When stacking is used in a classification problem, the output
of a single classifier can be a label, probability distribution,
or entropy [29]. As for how to combine the outputs of single
classifiers, there are a lot of studies [30, 31, 32, 33]. Many
papers apply stacking to different applications [34, 35, 36, 37,
38]. We need to redesign the stacking framework to be more
compatible with the aluminum ingot data.

B. Imbalance Problem

The degree of imbalance makes the problem more com-
plex and hinders learning [7]. Traditional classifiers are often
unable to deal with imbalance problems [39, 40]. This main
issue occurs since the learning process of most classification
algorithms is always biased toward the majority class samples,
and minority ones are underrepresented [24, 41]. Resampling
is one of the common methods to deal with imbalance
problems. Depending on the mechanism, resampling methods
can be divided into three categories, which are undersam-
pling methods, oversampling methods and hybrids methods
[7, 8, 24, 41]. For concrete problems, we need to choose the
most appropriate one. There are some empirical guidelines on
how to select resampling methods. When there are hundreds
of minority samples in the dataset, undersampling is superior
to oversampling in terms of computational time. When there
are only a few dozen minority samples, oversampling is found
to be a better choice [42, 43]. Considering that the sample size
of the aluminum alloy dataset is not big and the number of
minority samples is also small, oversampling is more suitable
for our problem.

Regarding oversampling, SMOTE is a powerful method that
has shown a great deal of success in various applications
[44, 45]. It creates synthetic data based on the feature space
similarities between existing minority samples. A synthetic

Fig. 2. Four oversampling strategies of Polynomial Fitting
SMOTE. (a) Star topology. (b)Polynomial curve topology.

(c) Bus topology. (d) Mesh topology.

sample 𝑥 is a point along the line segment joining 𝑥𝑚𝑖𝑛 under
consideration and a randomly selected nearest neighbor 𝑥𝑘𝑁𝑁

It is generated according to (1),

𝑥 = 𝑥𝑚𝑖𝑛 + 𝛿(𝑥𝑘𝑁𝑁 − 𝑥𝑚𝑖𝑛) (1)

where 𝛿 ∈ [0, 1] is a random number. The number of synthetic
samples is determined by the proportion of the majority and
minority samples. Then a certain number of nearest neighbors
should be selected according to this proportion. Since SMOTE
was published in 2002, many variants have been proposed
[46].

III. PROPOSED METHOD

In this section, an oversampling technique and data par-
tition are combined with a standard stacking classification
framework. Four kinds of sample generation methods based on
PFSMOTE are used in combination. Data partition allows data
from different processes to be trained separately. It makes the
training more in line with the production process and improves
the diversity of stacking ensemble learning.

A. Polynomial Fitting SMOTE

Different from SMOTE, PFSMOTE refers to four fairly
different oversampling strategies controlled by the topology
parameter of the technique: Star, Polynomial curve, Bus, and
Mesh topologies. All operations are performed on minority
samples. New synthetic samples are generated according to
the above four different topologies. The algorithm is visualized
in Figure 2. Blue circles represent the majority samples, red
circles represent the minority samples, and red stars represent
the synthetic minority samples. The numbers of majority
samples and minority samples are 𝑚 and 𝑛 respectively. 𝑚−𝑛
synthetic minority samples are needed to achieve a balance
between majority and minority classes.

1) Star topology: As shown in Figure 2(a), we average each
process parameter of unqualified ingot samples and use 𝑥 (red
triangle) to represent the mean value. Then we fit 𝑛 linear
functions 

𝑦1 = 𝑥1
𝑚𝑖𝑛
+ 𝛿 × (𝑥 − 𝑥1

𝑚𝑖𝑛
)

...

𝑦𝑛 = 𝑥𝑛
𝑚𝑖𝑛
+ 𝛿 × (𝑥 − 𝑥𝑛

𝑚𝑖𝑛
)

(2)
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for connecting each unqualified ingot sample 𝑥𝑖
𝑚𝑖𝑛

, 𝑖 =

1, 2, ..., 𝑛 and the mean value.
𝑙 = ((𝑚−𝑛))/𝑛 new synthetic unqualified ingot samples are

generated on each line. It is realized by adjusting the size of
𝛿 according to 𝑙, where 𝛿 = ( 1

𝑙+1 ,
2
𝑙+1 , ...,

𝑙
𝑙+1 ).

2) Polynomial curve topology: As shown in Figure 2(b), we
fit unqualified ingot samples using a polynomial curve 𝑦 of 𝑝

degree as follows:

𝑦 = 𝜔0𝑥
𝑝 + 𝜔1𝑥

𝑝−1 + 𝜔2𝑥
𝑝−2 + · · · + 𝜔𝑛 (3)

where {𝜔0, 𝜔1, ..., 𝜔𝑛} are coefficients. In practice, we fit each
feature of unqualified ingot samples using (3) with 𝑝 = 3. As
a result, we have 𝑑 polynomial curves, where 𝑑 is the number
of features. 𝑙 = 𝑚−𝑛 new points are generated on each curve.
It is realized by applying 𝑙 random numbers as inputs of (3).
After 𝑑 operations, 𝑙 new synthetic unqualified ingot samples
are generated.

3) Bus topology: As shown in Figure 2(c), we fit 𝑛−1 linear
functions 

𝑦1 = 𝑥1
𝑚𝑖𝑛
+ 𝛿 × (𝑥2

𝑚𝑖𝑛
− 𝑥1

𝑚𝑖𝑛
)

...

𝑦𝑛−1 = 𝑥𝑛−1
𝑚𝑖𝑛
+ 𝛿 × (𝑥𝑛

𝑚𝑖𝑛
− 𝑥𝑛−1

𝑚𝑖𝑛
)

(4)

for connecting two succeeding unqualified ingot samples.
Therefore, 𝑙 = ((𝑚 − 𝑛))/((𝑛 − 1)) new synthetic unqualified
ingot samples are generated on each line. It is realized by
adjusting the size of 𝛿 according to 𝑙 in the same way as Star
topology.

4) Mesh topology: As shown in Figure 2(d), we fit (𝑛(𝑛 −
1))/2 linear functions for connecting one unqualified ingot
sample to all others. Therefore, 𝑙 = (2(𝑚−𝑛))/(𝑛(𝑛−1)) new
synthetic unqualified ingot samples are generated on each line.
It is realized in the same way as Star topology.

Four ways generate four different types of minority samples.
These samples are randomly added to the training set. Com-
pared with other variant methods of SMOTE, the generated
samples are more diverse. This method fully considers all
minority samples in the near and far areas.

B. Oversampling Partition Stacking

We propose a new stacking framework that is based on
standard stacking. It also makes predictions using two levels,
base-level and meta-level. Typically, there are multiple clas-
sifiers at base-level and one at meta-level. In order to make
the classification framework more compatible with melting-
casting process and utilize the characteristics of the hetero-
geneous ensemble, raw data is input stacking model in the
upstream and downstream order of practical production, i.e.
melting data, holding data, and casting data. At the base-
level, the classifiers only train melting data first. The results
that the base-classifiers predict are fused with holding data.
In the same way, the new results are then fused with casting
data. Once again, base-classifiers train and make predictions.
After that, the last results are fused with all data for training
at the meta-level. A meta-classifier is applied to generate the
final prediction. Before each training, PFSMOTE is needed to
balance the training data.

Specific algorithm pseudocode is shown in Algorithm 1
and specific details of the framework are depicted in Figure
3. We use {𝐵𝐶1, 𝐵𝐶2, ..., 𝐵𝐶𝑇 } and 𝑀𝐶 to represent a set
of base-classifiers and a meta-classifier respectively, where 𝑇

is the number of base-classifiers. Raw data is divided into a
training set 𝐷𝑡𝑟 and a test set 𝐷𝑡𝑒. Same as standard stacking,
in the learning process, the operations on training and test
data are almost identical, with the only difference being that
base-classifiers’ predictions for the test set are averaged during
cross-validation. The training set is split into 𝑘 folds, 𝑘 − 1
folds of which are utilized for training, and the remaining one
fold is used for validation. At the same time, the test set is
also predicted. After 𝑘 successive rounds, all samples of the
training set are predicted, and the mean value of 𝑘 test set’s
outputs is also calculated.

In Step 1 of Algorithm 1, we divide the training set and
the test set into three parts. For the sake of brevity, we take
the training set as an example. Partition 𝐷𝑡𝑟 according to
different production processes, 𝐷𝑡𝑟 =

{
𝐷

𝑝𝑟
𝑡𝑟

}
, 𝑝𝑟 = 1, 2, 3,

where 𝑝𝑟 denotes different processes, hence 𝐷1
𝑡𝑟 , 𝐷

2
𝑡𝑟 , 𝐷

3
𝑡𝑟

denote melting data, holding data and casting data respectively.
According to the framework of stacking, input data into the
ensemble framework in turn. At base-level, input 𝐷1

𝑡𝑟 to base-
classifiers {𝐵𝐶1, 𝐵𝐶2, ..., 𝐵𝐶𝑇 } firstly. The output is denoted
by 𝑃1

𝑡𝑟 . It means that this part of the process has an influence
on the quality of ingots after the melting is over.

We select the probability distribution as the output of each
classifier, hence 𝑃1

𝑡𝑟 can be denoted as

𝑃
𝑝𝑟
𝑡𝑟 =

[
𝑃
𝑝𝑟

𝐵𝐶𝑡,𝑡𝑟
,

(
1 − 𝑃

𝑝𝑟

𝐵𝐶𝑡,𝑡𝑟

)]
, 𝑡 = 1, 2, ..., 𝑇 (5)

with 𝑝𝑟 = 1. Let 𝑃
𝑝𝑟

𝐵𝐶𝑡,𝑡𝑟
be the probability that the t-

th classifier for each training sample in the training set of
melting data belongs to a certain class. Since it is a binary
classification, we use 1 − 𝑃

𝑝𝑟

𝐵𝐶𝑡,𝑡𝑟
to represent the probability

that belongs to the other class. We have 𝑀 training samples.
Therefore, the dimension of matrix 𝑃1

𝑡𝑟 is 𝑀 × (2𝑇).
Then concatenate 𝑃1

𝑡𝑟 to 𝐷2
𝑡𝑟 as a whole input for the next

training. It comes to the refining stage at this point. Using base-
classifiers to train

{
𝐷2

𝑡𝑟 , 𝑃
1
𝑡𝑟

}
as we do in the previous step.

After that, a matrix 𝑃2
𝑡𝑟 is predicted and can likewise be de-

noted by (5) with 𝑝𝑟 = 2. By that analogy, we train
{
𝐷3

𝑡𝑟 , 𝑃
2
𝑡𝑟

}
and get 𝑃2

𝑡𝑟 . It means ingots quality is the cumulative result
of each process. At meta-level, concatenate 𝑃2

𝑡𝑟 to 𝐷𝑡𝑟 , then
train 𝐷𝑡𝑟 , 𝑃

3
𝑡𝑟 . Once again, all production processes are fully

considered to avoid missing useful information. This process
is shown in Step 2 of Algorithm 1. The quality prediction of
the test set transformed with the training set is the final result.

Based on the partition stacking framework, PFSMOTE is
carried out to balance the samples before each training. As
shown in Step 2 and Step 3 of Algorithm 1, PFSMOTE(𝑡𝑠)
is oversampling for the current training set 𝑡𝑠. After oversam-
pling, balanced data is input into base-classifiers for training.
At this time, the classifiers’ ability to classify unqualified
ingots is enhanced. In the same way, oversampling is also
applied at the meta-level, so that the meta-classifier can better
learn unqualified ingots. At base-level, 𝑘-fold cross-validation
is performed on each part of the data, and each base-classifier
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Fig. 3. Training details of partition stacking.

Algorithm 1 Oversampling partition stacking

Input: training set 𝐷𝑡𝑟 , test set 𝐷𝑡𝑒, base-classifiers 𝐵𝐶1, 𝐵𝐶2, ..., 𝐵𝐶𝑇 , meta-classifier 𝑀𝐶

Output: quality prediction results
Begin
Step 1: Dataset partition
According to the production process, divide the training set and test set into three parts.
𝐷𝑡𝑟 =

{
𝐷

𝑝𝑟
𝑡𝑟

}3
𝑝𝑟=1 , 𝐷𝑡𝑒 =

{
𝐷

𝑝𝑟
𝑡𝑒

}3
𝑝𝑟=1.

Step 2: Training base-classifiers
Current training set 𝑡𝑠 =

{
𝐷1

𝑡𝑟

}
.

for 𝑝𝑟 ←− 1 to 3 do
for 𝑡 ←− 1 to 𝑇 do

Learn a base-classifier 𝐵𝐶𝑡 using PFSMOTE(𝑡𝑠).
end for
if 𝑝𝑟 ≠ 3 then

Construct new current training set and test set


𝑡𝑠 =

{
𝐷

𝑝𝑟+1
𝑡𝑟 , 𝑃

𝑝𝑟
𝑡𝑟

}
𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 =

{
𝐷

𝑝𝑟+1
𝑡𝑒 , 𝑃

𝑝𝑟
𝑡𝑒

} ,

where

𝑃
𝑝𝑟
𝑡𝑟 =

{
𝑃
𝑝𝑟

𝐵𝐶𝑡,𝑡𝑟
, 1 − 𝑃

𝑝𝑟

𝐵𝐶𝑡,𝑡𝑟

}
, 𝑡 = 1, 2, ..., 𝑇

𝑃
𝑝𝑟
𝑡𝑒 =

{
𝑃
𝑝𝑟

𝐵𝐶𝑡,𝑡𝑒
, 1 − 𝑃

𝑝𝑟

𝐵𝐶𝑡,𝑡𝑒

}
, 𝑡 = 1, 2, ..., 𝑇

else
Construct new current training set and test set

{
𝑡𝑠 =

{
𝐷𝑡𝑟 , 𝑃

𝑝𝑟
𝑡𝑟

}
𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 =

{
𝐷𝑡𝑒, 𝑃

𝑝𝑟
𝑡𝑒

} for meta-classifier.

end if
end for
Step 3: Learn meta-classifiers
Learn meta-classifier 𝑀𝐶 using PFSMOTE(𝑡𝑠)
return 𝑀𝐶 (𝑡𝑒𝑠𝑡 𝑠𝑒𝑡)
End

is trained. Therefore, PFSMOTE is applied 3× 𝑘 ×𝑇 times at
base-level and only one time at the meta-level.

In terms of the framework we proposed, single classifier

selection is based on two principles: low complexity and high
diversity between different classifiers [23, 45]. Each classifier
should be as unique as possible, that is, each classifier has
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a different classification boundary from each other [36]. It
requires that each classifier has different misclassified samples
so that they can complement each other when integrating the
results. Such a set of classifiers is usually unstable to use since
they can generate sufficiently different predictive results even
for small perturbations in their training parameters. Generally,
the higher the number of base-classifiers, the better the results
we achieve. However, it is also prone to overfitting [22].
We chose three kinds of classifiers for base-level, namely
kNN, DT, and LR. It can be said that these three kinds of
classification algorithms are very general and simple. Their
classification mechanism is completely different. At the meta-
level, we use SVM as a meta-classifier. SVM is a powerful
classifier with a wide range of applications [45].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method. We start with the data collection and briefly introduce
data preprocessing. Experimental setup and several evaluation
metrics are also explained. Then we show a series of exper-
iments. In order to demonstrate the performance of the com-
bination of standard stacking framework and oversampling,
we first test on several public datasets. Then, the comparison
experiments are conducted on real-world aluminum alloy ingot
data. Data partition further improves the performance of the
model compared to the previous experiment. Multiple com-
parative experiments verify the effectiveness of the proposed
method.

A. Dataset and Preprocessing

We take AA-5182 aluminum alloy as the main object of our
study. 204 samples are collected in an aluminum casting plant
in China. Each sample represents the entire melting-casting
process. With the help of process knowledge and relevant
experts, some features that are not useful should be removed.
The selected features based on domain knowledge are shown
in Table I. Raw data is dirty and needs to be cleaned before
modeling. We correct the outlier using the mean or mode
instead, fill the respective feature mean values into the missing
values, and delete duplicate values. So far, we have obtained
the production process data of aluminum alloy in the melting-
casting stage. There are 204 rows (samples) and 16 columns
(features). In 204 samples of aluminum alloy ingots, only 19
samples have quality problems. Imbalanced datasets can be
described by three principal characteristics: imbalance rate
(IR), number of samples, and number of features. IR is the
proportion of majority and minority samples. There are 185
qualified ingots in our dataset, thus IR= 185 : 19 = 9.74.
Dataset description is shown in Table II.

B. Experimental Setup

All classifier parameters use the default values in scikit-
learn which is a machine learning toolkit written in Python
[46]. In order to fully consider the effects of randomness
and persuasiveness of the model, classification performance is
evaluated by five-folds stratified cross-validation and repeated

TABLE I Selected process parameters/features of raw data

Process Nodes Process Parameters/Features

Melting Additive Temperature, Master Alloy Temperature,
Melting Temperature

Refining Refining Times, Total Refining Time, Refining Tem-
perature, Ar2 Flow, Cl2 Flow

Casting Holder Actual Temperature, SNIF 1 Actual Temper-
ature, CFF Preheat Time, CFF Temperature, Total
Casting Time, Actual Number of Ingots, Yield

Quality Detection Appearance Quality

TABLE II Dataset description

IR Number of samples Number of features

9.74 204 16

five times using different random generator seeds. Different
from the general cross-validation method, stratified cross-
validation divides data according to the proportion of different
classes. It ensures that every fold is also imbalanced. Using
four folds as the training set and the remaining one fold as
a test set. We take the average value of different evaluation
metrics as the final experimental evaluation.

C. Evaluation Metrics

The selected evaluation metrics must be able to reflect
the overall predictive performance of different classes. In
Table III, the confusion matrix demonstrates the results of
incorrectly and correctly classified samples of each class in
binary classification. Here 𝑇𝑃, 𝑇𝑁 , 𝐹𝑃, and 𝐹𝑁 separately
represent the number of minority samples that are classified
as minority class, the number of minority samples that are
classified as majority class, the number of majority samples
that are classified as minority class, and the number of majority
samples that are classified as majority class.

Accuracy is one of the prevailing evaluation metrics and is
defined as the correct prediction sample size divided by the
total testing sample size, as is shown in (6).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 (6)

However, accuracy ignores the effect of imbalanced samples
and only reflects the overall prediction accuracy of the dataset.
As a result, it is likely to generate deceptive high accuracy in
imbalanced data. To address this drawback, additional three
comprehensive evaluation metrics apply to validate this study
[24]. They are F-measure, Area Under Roc Curve (ROC-
AUC), and G-Mean. These evaluation metrics can well reflect
the performance of the classifiers and each of them has a
different focus.

F-measure: It can be shown in (7) and viewed as a weighted
average of model accuracy and recall rates. Here, precision and
recall are calculated as (8) and (9) respectively.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐹1) = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (8)
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TABLE III Confusion matrix

Positive Class Negative Class

Positive Class True Positive False Negative
Negative Class False Positive True Negative

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9)

G-Mean: Geometric mean is a comprehensive evaluation
method constructed with sensitivity and specificity, which is
presented as (10). Sensitivity is equal to recall, and specificity
can be calculated in (11). The higher G-Mean shows the
balance between classes is reasonable and has outstanding
performance in the binary classification model.

𝐺 − 𝑀𝑒𝑎𝑛 =
√︁
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 (10)

𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (11)

ROC-AUC: It is an extensively used evaluation metric
obtained from the Receiver Operating Characteristic (ROC)
curve representing the area under the ROC curve.

In general, the four metrics are between 0 and 1. The larger
they are, the better their classification performance is. ROC-
AUC and G-Mean focus more on the minority class samples.

D. Performance Comparison

We test the effectiveness of adding PFSMOTE to a standard
stacking classification framework to deal with data imbalance
problems on several public datasets. As shown in Table IV,
15 datasets are collected in the Knowledge Extraction from
Evolutionary Learning (KEEL) repository [47]. The datasets
are sorted by IR from small to large. In order to show the
wide range of applications of the model as much as possible,
IR values are well dispersed. The number of features of these
datasets also ranges widely. Most datasets have about the same
number of minority class samples as ours. In Table IV, YES
and NO indicate the use or non-use of PFSMOTE. The four
metrics mentioned above are used to evaluate the feasibility
of our method.

Experimental results are getting better for 13 of the 15
datasets, except for ecoli-0 vs 1 and dermatology-6. By com-
paring the values of four evaluation metrics, we can see that
there is no significant change in classification ability. For the
rest of the datasets - newthyroid2, glass6, cleveland-0 vs 4,
and glass4, all evaluation metrics are improved. For other
datasets, ROC-AUC and G-Mean increase while Accuracy and
F1 decrease. That means the model sacrifices the classification
accuracy of majority class samples to gain the classification
accuracy of minority class samples. It is worth mentioning that
in glass-0-1-6 vs 2 and glass2, although the overall accuracy
decreases a lot, it can be seen that the model does not identify
minority class samples without oversampling. However, our
method can predict correctly. Although the ability is limited,
we still think it is effective.

Next, we evaluate our proposed method on aluminum alloy
ingot data. The experimental results are shown in the Table V.
We start with single classifiers for classification. Considering
that the difference between the proposed method and the stan-
dard stacking comprises two techniques, one is data partition
according to the process, and the other is oversampling using
PFSMOTE. We also compare the methods that use one alone.
They are partition-stacking and PFSMOTE-stacking. Among
single classifiers, kNN has the highest classification accuracy,
reaching 0.9402. It also has the highest F1 value. For minority
samples, DT performs best on ROC-AUC and G-Mean values.
However, the performance of the other three classifiers is not
satisfactory. It can be seen that most classifiers fail when han-
dling the imbalance problem. When using a standard stacking
ensemble framework, the results show that the accuracy and F1
perform better than single classifiers, while the values of ROC-
AUC and G-Mean are a little better than kNN, SVM, and LR,
but not as good as DT. It also reflects the fact that ensemble
learning can improve the overall classification performance
from the perspective of accuracy and sacrifice the classification
accuracy of minority classes at the same time. When only
data partition is used, accuracy and F1 value reach the best
of the whole comparison experiment. Accordingly, compared
with standard stacking, the classification effect of minority
decreases. Similarly, when oversampling is used alone, the
classification effect for the minority class will be better, while
the classification effect for the majority class will be slightly
reduced. When using both techniques, ROC-AUC and G-Mean
values reach the best of the whole comparison experiment. For
quality prediction, these evaluation metrics need to be given
priority, while in fact, accuracy and F1 values are still within
the acceptable range.

From the perspective of the diversity of ensemble learning,
our method uses different minority class samples for oversam-
pling during each training to obtain a lot of synthetic samples.
In addition, data partition leads to greater diversity. Therefore,
the final classification effect is the result of the joint action
of the two techniques. We believe that our method is more
suitable for the quality prediction of aluminum alloy ingots.

Then we compare some advanced oversampling methods
based on SMOTE algorithm and use them respectively in our
classification framework. They are SMOTE-TomekLinks [48],
Assembled SMOTE [49], ProWSyn [50], SMOTE-IPF [51],
SMOBD [52], G-SMOTE [53], CCR [54]. These oversam-
pling methods can be roughly divided into two categories,
one of which focuses on selecting minority class samples
before generating synthetic samples, and the other focuses on
removing synthetic noise after generating synthetic samples.
Although the respective corresponding classifiers are different
in the papers that propose these methods, they all have the
ability to solve imbalance problems in different fields. The
experimental results are shown in the Table VI. PFSMOTE
works best in the minority class. In our framework, ROC-
AUC and G-Mean values of PFSMOTE are higher than those
of other oversampling methods, and Accuracy and F1 values
are not the highest, but they are perfectly acceptable.

The common behavior of using the Star, Polynomial curve,
Bus, and Mesh topologies is that each of them generates
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TABLE IV Comparison of the effectiveness of combined oversampling and stacking method on public datasets

Name IR Number of samplers Number of features PFSMOTE Accuracy F1 ROC-AUC G-Mean

ecoli-0 vs 1 1.86 220 7
NO 0.9873 0.9904 0.9846 0.9844

YES 0.9846 0.9884 0.9812 0.981

glass0 2.06 214 9
NO 0.8354 0.8776 0.8132 0.8052

YES 0.8234 0.8573 0.8372 0.8346

vehicle1 2.9 846 18
NO 0.8005 0.8703 0.7037 0.6726

YES 0.7993 0.8557 0.7962 0.7955

glass-0-1-2-3 vs 4-5-6 3.2 214 9
NO 0.9467 0.9644 0.9417 0.9396

YES 0.9456 0.9635 0.9452 0.9436

newthyroid2 5.14 215 5
NO 0.9888 0.9934 0.9818 0.9807

YES 0.9898 0.9939 0.9893 0.9888

glass6 6.38 214 9
NO 0.9636 0.9794 0.8792 0.8649

YES 0.9721 0.984 0.9251 0.9174

ecoli3 8.6 336 7
NO 0.9303 0.9615 0.7818 0.7438

YES 0.8964 0.9393 0.8765 0.8725

vowel0 9.88 988 13
NO 0.999 0.9994 0.9944 0.9944

YES 0.9988 0.9993 0.9993 0.9993

glass-0-1-6 vs 2 10.29 192 9
NO 0.9116 0.9537 0.5 0

YES 0.7855 0.8717 0.6762 0.6246

ecoli-0-1 vs 5 11 240 6
NO 0.9767 0.9875 0.8691 0.8539

YES 0.9653 0.9836 0.9145 0.9068

glass2 11.59 214 9
NO 0.9208 0.9587 0.5 0

YES 0.779 0.8673 0.6895 0.6565

cleveland-0 vs 4 12.62 177 13
NO 0.9377 0.9669 0.6565 0.4895

YES 0.949 0.9723 0.8377 0.7804

ecoli-0-1-4-6 vs 5 13 280 6
NO 0.9779 0.9882 0.8542 0.8369

YES 0.9714 0.9845 0.9108 0.9037

glass4 15.47 214 9
NO 0.9684 0.9835 0.7495 0.6382

YES 0.9721 0.9849 0.9072 0.8787

dermatology-6 16.9 358 34
NO 1 1 1 1

YES 0.9683 0.9826 0.9145 0.9073
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TABLE V Experimental results of proposed method and
different combinations in classification framework

Accuracy F1 ROC-AUC G-Mean

KNN 0.9402 0.968 0.704 0.5894
DT 0.9324 0.9624 0.8161 0.7892
LR 0.9118 0.9515 0.7 0.594

SVM 0.9373 0.9666 0.6739 0.5165
Standard stacking 0.9472 0.9716 0.7423 0.6552

PFSMOTE-stacking 0.9412 0.9675 0.8377 0.8054
Partition-stacking 0.95 0.9734 0.7406 0.5966
Proposed method 0.9362 0.9644 0.8467 0.8274

TABLE VI Experimental results between different
oversampling methods

Accuracy F1 ROC-AUC G-Mean

SMOTE TomekLinks 0.9157 0.9531 0.7774 0.7319
Assembled SMOTE 0.9088 0.9485 0.7887 0.7523

ProWSyn 0.9058 0.9469 0.7943 0.768
SMOTE-IPF 0.9166 0.9538 0.7612 0.6926

SMOBD 0.9099 0.9498 0.7591 0.7097
CCR 0.9354 0.9643 0.8044 0.7769

G SMOTE 0.9372 0.9654 0.8055 0.7636
PFSMOTE 0.9362 0.9644 0.8467 0.8274

samples along line segments between relatively far samples
of the minority class, thus, the generated samples are more
scattered in the minority class’s manifold than using other
SMOTE variants. It has the advantage of making minority
samples distributed at different locations throughout space
more like a whole, avoiding treating samples far away from
the center of synthetic samples as noise.

Finally, the proposed method is compared with several
popular classification frameworks combining resampling and
ensemble learning. In ensemble learning, two frameworks are
used - bagging and boosting. Random Forest (RF) can be
thought of as a special kind of bagging. The methods we
compare can be divided into two categories according to
different resampling rules. BalancedBagging [22] allows to
undersample each subset of data before training each classifier
of bagging. Here, the weak classifiers are DTs. BalancedRF
[55] is similar to BalancedBagging, but replaces bagging with
RF. RUSBoost [56] randomly undersample the dataset before
performing a boosting iteration. A specific method that uses
AdaBoost as weak classifiers in the bagging framework is
called EasyEnsemble [57]. It allows to bag AdaBoost learners
which are trained on balanced bootstrap samples. All of the
above algorithms are based on undersampling method com-
bined with different ensemble learning models. SMOTEBoost
[58] and SMOTEBagging [59] use the oversampling method
when training subsets. To be more comparative, we change
the SMOTE of the original algorithm to the PFSMOTE used
by our proposed method. The experimental results are shown
in Table VII.

The experimental results show that SMOTEBagging has the
best performance on Accuracy and F1 values and the proposed
method has the best performance on ROC-AUC and G-Mean
values. It can be seen that the combination of oversampling
and ensemble learning can achieve better results on different
evaluation metrics. It also explains that when the sample size

TABLE VII Experimental results of proposed methods and
other methods of combining resampling and ensemble

learning

Accuracy F1 ROC-AUC G-Mean

BalancedBagging 0.807 0.8827 0.7848 0.7745
BalancedRF 0.7409 0.8347 0.7614 0.7461
RUSBoost 0.794 0.8715 0.8313 0.8236

EasyEnsemble 0.7844 0.8659 0.8019 0.7916
SMOTEBoost 0.8519 0.9137 0.7567 0.7174

SMOTEBagging 0.9393 0.9664 0.826 0.7824
Proposed method 0.9362 0.9644 0.8467 0.8274

of the minority class is not large enough, the oversampling
method can achieve better performance. The proposed method
performs best in the minority class we are most interested in,
and the overall accuracy does not drop much.

V. CONCLUSION

This paper presents a method for quality prediction of
aluminum alloy ingots. We cross-use data mining and machine
learning techniques to build a relationship model of process
parameters and quality. Based on the stacking classification
framework of ensemble learning, the data partition is done
according to the production process when training classifiers.
In order to solve the imbalance problem, PFSMOTE is used to
adjust the proportion of different classes during each training.
Comparative experiments show that the novel learning model
is the most suitable for quality prediction and can avoid the
losses caused by the detection after the formation of ingots.
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[29] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better
than selecting the best one?” Machine Learning, vol. 54, pp. 255–273,
2004.

[30] K. M. Ting and I. H. Witten, “Issues in stacked generalization,” Journal
of Artificial Intelligence Research, vol. 10, pp. 271–289, 1999.

[31] M. Koopialipoor, P. G. Asteris, A. S. Mohammed, D. E. Alexakis,
A. Mamou, and D. J. Armaghani, “Introducing stacking machine learn-
ing approaches for the prediction of rock deformation,” Transportation
Geotechnics, vol. 34, p. 100756, 2022.

[32] Y. Chen, M.-L. Wong, and H. Li, “Applying ant colony optimization to
configuring stacking ensembles for data mining,” Expert Systems with
Applications, vol. 41, no. 6, pp. 2688–2702, 2014.

[33] I. D. Mienye and Y. Sun, “A survey of ensemble learning: Concepts,
algorithms, applications, and prospects,” IEEE Access, vol. 10, pp.
99 129–99 149, 2022.

[34] B. M. Haddad, S. Yang, L. J. Karam, J. Ye, N. S. Patel, and M. W.
Braun, “Multifeature, sparse-based approach for defects detection and
classification in semiconductor units,” IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 1, pp. 145–159, 2016.

[35] Z. Hu, H. Qiu, Z. Su, M. Shen, and Z. Chen, “A stacking ensemble
model to predict daily number of hospital admissions for cardiovascular
diseases,” IEEE Access, vol. 8, pp. 138 719–138 729, 2020.

[36] M. Jiang, J. Liu, L. Zhang, and C. Liu, “An improved stacking
framework for stock index prediction by leveraging tree-based ensemble
models and deep learning algorithms,” Physica A: Statistical Mechanics
and its Applications, vol. 541, p. 122272, 2020.

[37] J. Moon, S. Jung, J. Rew, S. Rho, and E. Hwang, “Combination of short-
term load forecasting models based on a stacking ensemble approach,”
Energy and Buildings, vol. 216, p. 109921, 2020.

[38] W. Sun and B. Trevor, “A stacking ensemble learning framework for
annual river ice breakup dates,” Journal of Hydrology, vol. 561, pp.
636–650, 2018.
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