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Optimization of Multi-Factory Remanufacturing
Processes with Shared Transportation Resources

Using the ALNS Algorithm
Jinlei Gu, Zeyu Guo, Jiacun Wang, Liang Qi, Shujin Qin and Shaoyu Zhang

Abstract—Decentralized manufacturing addresses growing
challenges in centralized production by reducing costs for produc-
tion, storage, and transportation through proximity to consumers.
This study aims to optimize a multi-factory remanufacturing pro-
cess, incorporating disassembly plants, manufacturing facilities,
disassembly lines, and third-party logistics. The primary objec-
tive is to enhance system performance by balancing disassembly
lines, optimizing transportation and routing, and minimizing
workstation costs.

Given the NP-hardness and computational complexity of the
disassembly line balancing problem (DLBP) and the vehicle
routing problem with pickup and delivery (VRPPD), this pa-
per proposes a multi-objective optimization framework. The
framework builds on existing disassembly strategies and employs
the adaptive large neighborhood search (ALNS) algorithm to
improve delivery and transportation efficiency while maximizing
execution profit. To enhance practical applicability, the problem
is systematically decomposed into two independent subproblems.
A mixed-integer programming model is developed to optimize
reverse supply chain performance and maximize profit. The
model’s feasibility and effectiveness are validated using the
CPLEX solver, demonstrating its capability to address complex
remanufacturing challenges.

Key Words—Multi-factory remanufacturing process optimiza-
tion, Disassembly line balancing problem, Reverse supply chain
optimisation, Vehicle routing problem with pickup and delivery,
Adaptive large neighborhood search

I. INTRODUCTION

IN the current era of globalization, escalating environmental
concerns and the imperative for resource sustainability are

driving a transformative shift away from conventional linear
business models towards more resource-efficient paradigms.
As a result, the optimization of cross-domain factory produc-
tion and supply chain management is assuming paramount sig-
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nificance for sustainable business development [1, 2]. Within
this multifaceted landscape, Multi-factory Remanufacturing
processes offer a distinct advantage: they enable remote su-
pervision and administration, underpinned by the pivotal role
of networking technologies in allocating resources and equip-
ment across heterogeneous locations. This, in turn, results in
enhanced productivity and cost-efficiency. Furthermore, these
processes facilitate production across geographically dispersed
locations, strengthening contingency management.

In recent years, significant attention has been devoted by
the research community to the Reverse Supply Chain (RSC)
network design problem and its various facets. The primary
objective of RSC network optimization is to seamlessly co-
ordinate the disassembly and remanufacturing of products,
ultimately contributing to the sustainability and environmental
image of the entire supply chain [3]. In contrast to extensively
studied assembly processes, disassembly is characterized by its
inherently volatile supply-side structure, necessitating effective
management to mitigate avoidable costs and inefficiencies [4].
A comprehensive repository of the latest models and algo-
rithms can be found in Akçalı et al.’s [5] exhaustive survey.As
emphasized in the research by Paksoy et al. [6], it is evident
that the simultaneous progress of RSC network optimization
and disassembly line balancing is interdependent. The cycle
times for disassembly and the total workstation count are intri-
cately linked to variables like transportation volumes, facility
capacity, collection/demolition rates, and fluctuating demand.
Therefore, addressing the challenges of RSC and DLBP in
isolation is unfeasible, their integration is imperative. Özceylan
et al.introduced a nonlinear mixed-integer programming model
that strategically addresses the DLBP and the broader closed-
loop supply chain network design problem [7]. This model
places significant emphasis on optimizing the costs associated
with transportation, procurement, and operations at disas-
sembly workstations within the framework of both forward
and reverse chains. However, research on the multi-factory
remanufacturing processes optimization problem (MRPOP) is
notably scarce. MRPOP is designed to coordinate and optimize
the operations of multiple disassembly and remanufacturing
factories within the RSC network. It’s primary objective is to
maximize the overall efficiency of the entire remanufacturing
system while concurrently optimizing resource allocation, dis-
assembly scheduling, and transportation route planning.

The rapid advancement of electronic technology has signifi-
cantly improved people’s quality of life. However, the frequent
iteration and updates of electronic products have led to a
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substantial increase in end-of-life (EOL) products. Effectively
managing these EOL products is of paramount importance,
as highlighted by previous research [8, 9, 10, 11, 12, 13].
The crux of the matter lies in the DLBP [14, 15], which
revolves around the optimal allocation of tasks at each sta-
tion. Scholars have made significant contributions to DLBP
research, classifying it into various types, including linear
[16, 17], U-shaped [18, 19, 20], bilateral [21], and others.
The importance of DLBP lies in its ability to minimize
the number of workstations, equilibrium idle time, hazard
index, demand index, and the change of disassembly direction,
thereby enhancing the overall efficiency of disassembly while
meeting demand requirements. Belassiria et al. [22] research
the assembly line rebalancing problem by considering uncer-
tain product demands and multi-skilled workers. They propose
a mathematical model and embed a heuristic program into a
genetic algorithm to maximize the production line efficiency.
This work combines MRPOP with DLBP to propose a Multi-
factory Remanufacturing-process-optimization Problem based
on based on Vehicle Routing Problem with Pickup and Deliv-
ery. In MRPOP, disassembly and transportation are two insep-
arable key stages. These two major issues are interdependent
and fully interactive.

Similar to the disassembly of products, factory routing
and recycling transportation of components within MRPOP
is critical.Introducing the vehicle routing problem (VRP) is
necessary for constructing route plans for a homogeneous
fleet of vehicles aiming at the shortest travel distances to
serve a range of customers. In recent years, the VRP problem
has been well-studied and has generated numerous variations
such as the CVRP, Pickup-and-delivery problems for goods
transportation (VRPPD), and The Vehicle Routing Problem
with Time Windows (VRPTW) problems. The literature clas-
sifies VRPPD into three categories based on demand types
and route structures: One-to-Many-to-One, Many-to-Many,
and One-to-One [23].This work mainly uses the one-to-one
Pickup and Delivery method. Some studies also consider the
simultaneous optimization of VRP and other problems, such
as production scheduling [24]. However, few studies have
focused on integrating DLBP with traffic planning problems.
In response to this gap, Diri Kenger et al. proposed the
Integrated Demolition Line Balancing and Routing Problem
(I-DLB-RP) [25]. This approach factors in the disassembly of
EOL and combines it with VRP to chart the optimal route
for transporting recyclable components to remanufacturing
centers. It takes into account numerous constraints and factors
to ensure the efficient distribution of recycled components,
all while minimizing disassembly and transportation costs.
This work proposes a combination of DLBP and VRPPD to
optimize the multi-factory remanufacturing process. In this
type of environment, the routing of disassembly/manufacturing
plant sites and the logistics distribution of products are closely
linked. This problem is essential in transportation as it aims
to transport items efficiently with limited resources and time.
This work combines MRPOP with DLBP and VRPPD to pro-
pose a Multi-factory Remanufacturing-process-optimization
Problem based on Shared transportation and distribution ser-
vice resources and discuss its specific application scenarios.

Fig. 1. The there types of PDPS.

Due to the NP-hardness and inapproximability of the DLBP
and VRPPD, researchers often turn to heuristic algorithms.
McGovern et al. [26] propose a genetic algorithm for DLBP,
achieving optimal or near-optimal solutions. Feng et al. [27]
present an enhanced multi-objective ant colony algorithm for
disassembly sequence planning. Fu et al. [28] utilize the
multiverse optimization algorithm for disassembly sequence
planning, accounting for operational faults. These studies
provide valuable insights and methodologies for tackling the
MRPOP. The ALNS algorithm, a heuristic search approach for
combinatorial optimization, amalgamates local and tabu search
concepts. Its adaptability stems from dynamically tailored
search strategies aligned with problem characteristics. Selected
for MRPOP due to its efficiency, robustness, adaptability,
and potent global search capabilities, it effectively balances
exploration and exploitation tasks, yielding optimal solutions.

In this work, we propose a linear mixed-integer model for an
MRPOP that encompasses multiple disassembly plants, man-
ufacturing plants, disassembly lines, and third-party logistics
providers. This model primarily focuses on task allocation for
disassembly lines, aiming to reduce disassembly costs, idle
time, and construct optimal routes for pickup and delivery in
network. Moreover, it pays heed to service time and distance
constraints with the dual objectives of reducing transportation
costs and maximizing profitability. In summary, this study
introduces a novel amalgamation of MRPOP and VRPPD
into the realm of RSC network optimization—a realm hitherto
underrepresented in existing literature.

The contributions of this work can be distilled into three
primary facets:

1) Combining MRPOP with DLBP and VRRPD, a modeling
method is described to integrate DLBP and VRRPD into the
RSC network, minimizing the total cost of disassembly and
transportation.

2) The problem is decomposed into two sub-problems. MR-
POP is precisely solved with CPLEX. Further optimizations
for delivery and transportation stages are achieved using the
ALNS algorithm. Here, we extend the Shaw Move heuristic
to consider membership levels and adopt a linear threshold
acceptance criterion instead of simulated annealing.

3) Experimental validation of the model and algorithm
effectiveness is conducted. Case testing with IBM CPLEX
confirms model correctness. Optimization results and runtimes
of ALNS and CPLEX are compared across various case
sizes. Through extensive verification experiments, the ALNS
algorithm’s excellence and robustness in solving VRPPD are
affirmed.

The remainder of the paper is organized as follows. Section
II delves into the problem and formulates a mathematical
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Fig. 2. The workflow of multi-factory remanufacturing process optimization.

model. Section III addresses the vehicle path planning prob-
lem. Section IV presents experimental designs and results.
Finally, Section V provides a summary of the work presented
in this paper.

II. PROBLEM DESCRIPTION

A. Problem Statement

This section examines the integration of the DLBP and the
VRPPD in MRPOP. Multi-factory remanufacturing is part of
the RSC network, encompassing disassembly plants, manufac-
turing plants, workstations, and transportation vehicles. It aims
to address various challenges including factory location, prod-
uct positioning, sequencing of disassembly processes, product
remanufacturing, and vehicle routing. Disassembly tasks are
overseen by disassembly plants, with the disassembled sub-
components then transported to the manufacturing plants by
means of vehicles. An important focal point in optimizing
the RSC network is effectively designing efficient reverse
logistics channels. This entails determining the number and
location of disassembly and manufacturing plants, optimizing
the sequence of disassembly tasks, allocating workstations,
setting capacity restrictions for third-party logistics vehicle
fleets, establishing service times for task nodes, and managing
the flow and distance between delivery tasks.As shown in Fig.
2, The problem can be divided into three stages:

1) Disassembly plant selection and disassembly scheduling:
Multiple disassembly and manufacturing plants are strate-

gically designed and positioned across different locations.
Disassembly plants consist of multiple workstations and dis-
assembly lines, which can concurrently carry out disassembly
tasks for different products. By efficiently allocating these
tasks to workstations based on task priority and workstation

cycle time limits, an optimal solution for the incomplete
disassembly problem involving linear disassembly lines can
be achieved.

2) Remanufacturing plant selection:
This stage focuses on component allocation. Based on prices

of sub-components by different manufacturing plants and the
distances between disassembly and manufacturing plants, the
sub-components obtained from disassembling different prod-
ucts are assigned to appropriate manufacturing plants.

3) Planning optimal transportation routes:
This stage tackles the transportation of disassembled parts,

specifically the VRPPD problem. The objective is to plan
the most efficient routes from the disassembly plants to the
manufacturing plants, ensuring the successful transport of all
disassembled parts and satisfying the requirements of all facto-
ries along the routes. Considerations include vehicle capacity
restrictions and service times, where each part request must
be picked up and delivered by the same vehicle. In addition,
the load of each transportation node must comply with the
maximum capacity limit of the visiting vehicle. Loads can be
combined and transported together to minimize transportation
costs. Service time is defined as the shortest time between
arrival at each node and departure, encompassing the time for
loading and unloading goods. For warehouses, the service time
is set at 0.

The objective of the experiments conducted is to mini-
mize disassembly and transportation costs while maximiz-
ing overall profit. To address the incomplete disassembly
problem involving linear disassembly lines, a linear mixed
integer programming model is utilized, while the VRPPD
problem is optimized using the ALNS algorithm to enhance
the transportation phase of the parts. This section provides
a comprehensive description of the problem assumptions and
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mathematical formulas.

B. AND/OR Graph

During the dismantling process of EOL products, prioriti-
zation relationships exist between different dismantling tasks.
DLBP aims to allocate dismantling tasks to workstations while
satisfying the prioritization relationship between tasks. This
task allocation process yields a dismantling sequence that
satisfies both the objective function and constraints. Since
the dismantling system is a discrete event system, researchers
utilize Petri nets, precedence diagrams, and other formal
methods to model and analyze the dismantling process and
resource requirements. This study utilizes AND/OR graphs to
describe task relationships.

Fig. 3 shows the schematic diagram of the fuel pump
[29], which consists of 13 sub-components, whose AND/OR
diagram is shown in Fig. 4. In the AND/OR diagram, the
subassemblies are represented by nodes, the indexes of the
subassemblies are represented by integers in pointed brackets,
and each disassembly task is represented by a directed edge
between the linked subassemblies. It is not difficult to find that
this product has 30 disassembly tasks.

Fig. 3. A schematic of the fuel pump.

Fig. 4. The AND/OR graph of the fuel pump.

To calculate the profits of subassemblies, three matrices are
used to describe the relationship between disassembly tasks
and subassemblies.

1) Incidence matrix

The incidence matrix D = [dpij] describes the relationship
between subassemblies and disassembly tasks, where i repre-
sent the subassemblies , j represent the task and p represents
the product number.

dpij =



1, if subassembly i is obainted by task j
in product p ;

−1, if subassembly i is disassembled by task j
of product p ;

0, otherwise.

2) Conflict matrix
The conflict matrix R = [rpj1j2 ] describes the conflicting

relationship between two tasks, where j1 and j2 represent the
disassembly task, p represent the product number.

rpj1j2 =


1, if task j1 of product p has a conflicting

relationship with j2 ;
0, otherwise.

3) Precedence matrix
The precedence matrix S = [spj1j2 ] describes the relationship

between two tasks,where j1 and j2 represent the disassembly
task, p represents the product number.

spj1j2 =


1, if task 𝑗1 can be executed before task 𝑗2

in product 𝑝 ;
0, otherwise.

The basic assumptions of the model are as follows:
1) The weight and yield of all subcomponents of the product
are known
2) The demand for the components in each plant is determined
and must be satisfied
3) The matrices D, S, and R are known
4) The disassembly process is partial
5) Each vehicle has a maximum capacity limit, requiring that
the vehicle load after visiting each node does not exceed its
maximum capacity
6) The service times of the transport vehicles when visiting
the task nodes are known
7) Load requests at all task nodes in the network are known,
with positive and negative indicating pickups/collections
8) The operating time of each operating workstation should
not exceed the cycle time of the dismantling plant where it is
located
9) The time spent on the disassembly task and the cost per
unit of time are known
10) Each disassembly task can be processed on any
workstation
11) To calculate the benefits of disassembled subassemblies,
two matrices are used to describe the relationship between
disassembled subassemblies and tasks.

C. Notations

This section shows a linear mixed integer programming
model to solve the problem of simultaneously optimizing DLB
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and VRPPD in an RSC network. The notation and decision
variables in the mathematical model satisfying all the above
decisions and assumptions are defined as follows:

Sets:
K Set of disassembly plant indices.
M Set of manufacturing plant indices.
P Set of product indices.
I𝑝 Set of all subassemblies in product 𝑝.

J𝑝 Set of all tasks in production 𝑝.

W𝑘 Set of linear workstations for the 𝑘th disassembly plant.
P𝑛 Set of all pickup nodes in the network.
D𝑛 Set of all delivery nodes in the network.
N′ Set of all task nodes. N′ = {1, 2, . . . , 2𝑁}
V Set of transport vehicles. V = {1, 2, . . . , 𝑉}
Indexes:

p Product index, p∈ P.
i subassemblies index, i∈ Ip.
j Disassembly task index, j∈ Jp.

w Disassembly task index, j∈ Wp.
k Disassembly factory index. k ∈ K.

m Manufacturing factory index. m ∈ m.
v Transport vehicle index, v ∈ V.

Parameters:

vmpi The the price at which manufacturing plant m
acquires component i of product p.

cT
km Transportation cost from disassembly

plant k to manufacturing plant m based on distance.
def The Euclidean distance from node e to node f.
tef The Traveling time from node e to node f.
Qv Indicates maximum load capacity of vehicle v.
dpij An element in the i-th row and j-th column of D.

R Dismantling conflict matrix.
rpj1j2 An element in the i-th row and j-th column of R.

S Dismantling Timing Relationship.
spj1j2 An element in the i-th row and j-th column of S.

cO
k Unit time cost of startup the k-th disassembly

factory.

cS
kw Cost of startup the w-th linear workstation of the

k-th disassembly factory.

Decision variables:

zpk =

{
1, If product p is assigned to disassembly factory k;
0, otherwise.

xpjkw =


1, If task j of product p is assigned to a linear

workstation w in disassembly factory k;
0, otherwise.

yk =


1, If the linear disassembly line of the

disassembly factory k is opened;
0, otherwise.

ukw =


1, If the linear workstation w on the disassembly

factory k is opened;
0, otherwise.

𝛼kmpi =


1, subassembly i of product p is shipped from

disassembly factory k to manufacturing factory
m;

0, otherwise.

𝜃efv =

{
1, If vehicle v travelled from node e to node f;
0, otherwise.

𝛽km =


1, Indicates that disassembly plant k to manufacturing

plant m has distribution tasks;
0, otherwise.

qe

{
> 0, Denotes the pick up request of the task node;
< 0, Denotes the delivery request of the task node.

Wkmpi, denotes the weight of component i of product p
shipped from disassembly plant K to manufacturing plant M.
Qv

e, denotes the current load after vehicle v has visited node e
Qkm, denotes the load demand from dismantling
plant k to at manufacturing plant m.
tve, denotes the time after vehicle v has visited node e.
Tk, Cycle time of disassembly factory.

The above explains the specific meaning of the relevant
variables and decision variables, and the objective function of
the mathematical model and the constraints are shown below.

D. Mathematical Model

The linear mixed integer mathematical model equation
satisfying all the above decisions and assumptions is defined
as follows:

𝑚𝑎𝑥
∑︁
𝑘∈K

∑︁
𝑚∈M

∑︁
𝑝∈P

∑︁
𝑖∈I𝑝

(
𝑣𝑚𝑝𝑖 − 𝑐𝑇𝑘𝑚

)
𝛼𝑘𝑚𝑝𝑖

−
∑︁
𝑣∈V

∑︁
𝑒∈N

∑︁
𝑓 ∈N

𝑑𝑒 𝑓 𝜃𝑒 𝑓 𝑣

−
∑︁
𝑘∈K

∑︁
𝑝∈P

∑︁
𝑗∈𝐽 𝑝

∑︁
𝑤∈W𝑘

𝑐𝐷𝑘𝑝 𝑗 𝑡𝑘𝑝 𝑗𝑥𝑝 𝑗𝑘𝑤

−
∑︁
𝑘∈K

𝑐𝑂𝑘 𝑇𝑘 −
∑︁
𝑘∈K

∑︁
𝑤∈W𝑘

𝑐𝑘𝑤𝑢𝑘𝑤

(1)

∑︁
𝑚∈M

𝛼𝑘𝑚𝑝𝑖 ≤
∑︁
𝑤∈W𝑘

∑︁
𝑗∈J𝑝

𝑑𝑝𝑖 𝑗𝑥𝑝 𝑗𝑘𝑤 ,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀𝑖 ∈ I𝑝 \ {1}
(2)

∑︁
𝑘∈K

𝑧𝑝𝑘 = 1,∀𝑝 ∈ P (3)

𝑧𝑝𝑘 ≤ 𝑦𝑘 ,∀𝑤 ∈ W𝑘 ,∀𝑘 ∈ K (4)
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𝑢𝑘𝑤 ≤ 𝑦𝑘 ,∀𝑤 ∈ W𝑘 ,∀𝑘 ∈ K (5)

𝑥𝑝 𝑗𝑘𝑤 ≤ 𝑧𝑝𝑘 ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝 ,∀𝑤 ∈ W𝑘 ,∀𝑘 ∈ K (6)

𝑥𝑝 𝑗𝑘𝑤 ≤ 𝑢𝑘𝑤 ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝 ,∀𝑤 ∈ W𝑘 ,∀𝑘 ∈ K (7)∑︁
𝑘∈K

∑︁
𝑤∈W𝑘

𝑥𝑝 𝑗𝑘𝑤 ≤ 1,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝 (8)∑︁
𝑗∈J𝑝

𝑡𝑝 𝑗𝑥𝑝 𝑗𝑘𝑤 ≤ 𝑇 𝑘 ,∀𝑘 ∈ K,∀𝑤 ∈ W𝑘

(9)∑︁
𝑤∈W𝑘

𝑤
(
𝑥𝑝 𝑗𝑘𝑤 − 𝑥𝑝𝑞𝑘𝑤

)
+

𝑊 𝑘

( ∑︁
𝑤∈W𝑘

𝑥𝑝𝑞𝑘𝑤 − 1

)
≤ 0,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀ 𝑗 , 𝑞 ∈ J𝑝 , 𝑠𝑝 𝑗𝑞 = 1

(10)

∑︁
𝑤∈W𝑘

𝑥𝑝𝑞𝑘𝑤 ≤
∑︁
𝑗∈J𝑝

∑︁
𝑤∈W𝑘

𝑥𝑝 𝑗𝑘𝑤𝑠𝑝 𝑗𝑞 ,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀ 𝑗 , 𝑞 ∈ J𝑝 , 𝑑𝑝𝑖𝑞 = 0
(11)

∑︁
𝑤∈W𝑘

(
𝑥𝑝 𝑗𝑘𝑤 + 𝑥𝑝𝑞𝑘𝑤

)
≤ 1,

∀𝑘 ∈ K,∀𝑝 ∈ P,∀ 𝑗 , 𝑞 ∈ J𝑝 , 𝑟𝑝 𝑗𝑞 = 1
(12)

𝑧𝑝𝑘 ∈ {0, 1} ,∀𝑝 ∈ P,∀𝑘 ∈ K (13)

𝑥𝑝 𝑗𝑘𝑤 ∈ {0, 1} ,∀𝑝 ∈ P,∀ 𝑗 ∈ J𝑝 , 𝑘 ∈ K, 𝑤 ∈ W𝑘 (14)

𝑦𝑘 ∈ {1, 0} ,∀𝑘 ∈ K (15)

𝑢𝑘𝑤 ∈ {1, 0} ,∀𝑘 ∈ K,∀𝑤 ∈ W (16)

𝛼𝑘𝑚𝑝𝑖 ∈ {1, 0} ,∀𝑘 ∈ K,∀𝑚 ∈ M,∀𝑝 ∈ P,∀𝑖 ∈ I (17)

𝑇𝑘 ∈ R+,∀𝑘 ∈ K (18)

∑︁
𝑝∈P

∑︁
𝑖∈I𝑝

𝑤𝑘𝑚𝑝𝑖 = 𝑞𝑒, ∀𝑘 ∈ K,∀𝑚 ∈ M,∀𝑒 ∈ P𝑛, 𝛽𝑘𝑚 = 1

(19)

𝑞𝑒 ≤ 𝛽𝑘𝑚 ∗ 𝑀,∀𝑒 ∈ P𝑁 (20)

𝜃𝑒 𝑓 𝑣 = 1,∀𝑒 ∈ P𝑁 , 𝛽𝑘𝑚 = 1 (21)∑︁
𝑓 ∈N

𝜃 𝑓 𝑒𝑣 −
∑︁
𝑓 ∈N

𝜃𝑒 𝑓 𝑣 = 0, ∀𝑒 ∈ N
′
,∀𝑣 ∈ V (22)

∑︁
f∈P𝑛+2*n+1

𝜃0 𝑓 𝑣 = 1,∀𝑣 ∈ V (23)∑︁
e∈D𝑛+0

𝜃𝑒,2∗𝑛+1,𝑣 = 1,∀𝑣 ∈ V (24)∑︁
f∈N
(𝜃𝑒 𝑓 𝑣 − 𝜃 𝑓 ,𝑛+𝑒,𝑣) = 0, ∀𝑒 ∈ P𝑛,∀𝑣 ∈ V (25)

𝑄𝑣𝑒 + 𝑞 𝑓 −𝑄𝑣𝑓 ≤ 𝑀 ∗ (1 − 𝜃𝑒 𝑓 𝑣), ∀𝑒 ∈ N,∀ 𝑓 ∈ N,∀𝑣 ∈ V
(26)

𝑞𝑒 ≤ 𝑄𝑣𝑒 ≤ 𝑄𝑣 , ∀𝑣 ∈ V (27)

0 ≤ 𝑄𝑣𝑒 ≤ 𝑄𝑣+𝑞𝑒 , ∀𝑣 ∈ V (28)

𝑄𝑣0 = 0, ∀𝑣 ∈ V (29)

𝑇 𝑣𝑒 + 𝑡𝑒 𝑓 − 𝑇 𝑣𝑓 ≤ 𝑀 ∗ (1 − 𝜃𝑒 𝑓 𝑣), ∀𝑒 ∈ N,∀ 𝑓 ∈ N,∀𝑣 ∈ V
(30)

𝑇 𝑣𝑒 + 𝑡𝑒,𝑛+𝑒 ≤ 𝑇 𝑣𝑛+𝑒, ∀𝑒 ∈ P𝑛,∀ 𝑓 ∈ N,∀𝑣 ∈ V (31)

𝜃𝑒 𝑓 𝑣 ∈ {1, 0} ,∀𝑒 ∈ N,∀ 𝑓 ∈ N,∀𝑣 ∈ V (32)

𝑄𝑣𝑒 ≥ 0,∀𝑒 ∈ N,∀ 𝑓 ∈ V (33)

𝑇 𝑣𝑒 ≥ 0,∀𝑒 ∈ N,∀ 𝑓 ∈ V (34)

The objective function (1) represents the maximum expected
profit of the entire network, comprising two main components.
The first component minimizes the dismantling cost to enhance
the recycling revenue of EOL products. The dismantling cost
includes the fixed cost of operating dismantling factories and
associated workstations, as well as the cost required for execut-
ing the dismantling tasks. The second component aims to min-
imize the transportation cost of transferring sub-components
from the dismantling factory to the manufacturing factory,
thereby maximizing the overall profit. Constraint (3) specifies
that only the components obtained from dismantling can be
allocated from the dismantling factory to the remanufacturing
factory. Constraint (4) ensures that each product can only be
assigned to a specific dismantling factory. Constraints (5)-(7)
indicate that products can only be assigned to workstations in
operational dismantling factories. Constraint (8) stipulates that
each dismantling task for a product can only be executed once.
Constraint (9) limits the work duration of each workstation
on a dismantling line to the assigned cycle time. Constraints
(10)-(11) require that the allocation of dismantling tasks for
each product align with their internal complexity, meeting
their prioritization constraints. Constraint (12) ensures that
the assignment of dismantling tasks satisfies the constraint
on conflicting relationships. Constraints (13)-(18) define the
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ranges of decision variables. Constraint (19) determines the
load request of the pickup nodes. (20) Connecting the two
symbol systems, where 𝛽𝑘𝑚 = 1 represents a distribution
relationship between dismantling factory k and manufacturing
factory m, M is a sufficiently large number. Constraint (21)
ensures that each request is accessed only once. Constraint
(22) guarantees flow conservation and path continuity, stating
that a vehicle must both enter and leave node e. Constraints
(23) and (24) ensure that each vehicle departs from the starting
point and arrives at the destination. Constraint (25) ensures
that pickup and delivery nodes associated with the same
request are accessed by the same vehicle. Constraint (26)
ensures correct load updates along the route of each vehicle,
where M is a sufficiently large positive integer. Constraints
(27) and (28) respectively prevent vehicles from violating
the maximum capacity constraints of the pickup and delivery
nodes. Constraint (29) mandates that the initial load of each
vehicle is 0. Constraint (30) ensures that the arrival time at
subsequent nodes is at least the sum of the arrival time and the
travel time between the two points, where M is a sufficiently
large positive integer. Constraint (31) ensures that pickup
nodes are serviced prior to the delivery nodes associated with
the same request. Lastly, constraints (32)-(34) represent the
ranges of decision variables

III. PROPOSED ALGORITHM

The ALNS framework, originating from Shaw’s Large
Neighborhood Search (LNS) in 1998, iteratively improves
solution quality by employing single removal and insertion
heuristics. Unlike traditional local search, LNS focuses on
exploring a limited solution space while extensively search-
ing the vicinity through optimal elimination and reinsertion
of node groups. Bent and Van Hentenryck (2006) achieved
satisfactory results with LNS on VRPPDTW, highlighting
the significant impact of the insertion heuristic on solution
quality. To address this, Ropke and Pisinger (2006) introduced
the ALNS algorithm as an alternative, enabling the use of
straightforward and fast insertion heuristics while maintaining
performance. In contrast to LNS’s fixed heuristics, ALNS ran-
domly selects from a predefined set of removal and insertion
heuristics at each iteration. Pisinger and Ropke (2007) con-
firmed ALNS’s robustness in handling various VRP versions,
including VRPPD.

We propose the ALNS framework with two modifications
based on Ropke and Pisinger (2006):

1) extending the Shaw Removal heuristic to consider mem-
bership status.

2) applying the Linear Threshold Acceptance criterion in-
stead of Simulated Annealing.

The ALNS framework, outlined in Algorithm 1, begins
with constructing a feasible initial solution in line 1. Lines
2-3 initialize a set of removal and insertion operators. The
algorithm iterates maxIter times. At each iteration, ALNS
removes and reinserts q requests from the solution in lines 7-8,
guided by heuristics discussed in Sections Removal Heuristics
and Sections Insert Heuristics. Lines 9-11 update the best-so-
far solution 𝑠∗ if a new solution 𝑠′ has a superior objective.

Lines 12-14 update the current solution 𝑠 if the acceptance
criterion, discussed in Section Acceptance Criterion from
Linear Threshold Acceptance, is met. The search process is
segmented into segments, each comprising segIter iterations.
At the end of each segment, operators update their scores in
line 16.

Algorithm 1 ALNS Framework

1: 𝑠∗ ← feasible initial solution
2: REM← set of removal operators
3: INS← set of insertion operators
4: 𝑞 ← number of requests to be removed
5: for 𝑖 := 0; 𝑖 < maxIter; 𝑖++ do
6: choose removal and insertion operator from REM and

INS.
7: (𝑠′, 𝑅removed) ← Remove(𝑠, 𝑞)
8: 𝑠′ ← Insert(𝑠′, 𝑅removed)
9: if 𝑓 (𝑠′) < 𝑓 (𝑠∗) then

10: 𝑠∗ ← 𝑠′

11: end if
12: if acceptance criterion met then
13: 𝑠← 𝑠′

14: end if
15: if maxIter mod segIter = 0 then
16: update scores for operators in REM and INS
17: end if
18: end for
19: return 𝑠∗

Fig. 5. Insert Delete Operation.

A. Removal Heuristics

This section introduces three distinct removal heuristics:
1) Random Removal, 2) Shaw Removal with Priority, 3)
Worst Removal. Each heuristic employs a unique criterion
for selecting requests to be removed and defines the function
Remove(𝑠, 𝑞) in Algorithm 1. This function, taking a feasible
solution 𝑠 and an integer 𝑞 as input, yields the partial solution
𝑠′ with 𝑞 requests removed and the set of removed requests
𝑅removed.

Compared to removing one or two requests from each route,
it is preferable to simultaneously remove requests that are
”close” to each other. Shaw Removal quantifies the similarity
between request pairs and aims to remove requests with higher
similarity within one iteration.

Algorithm 2 Shaw Removal with Priority (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠, 𝑞)
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1: 𝑟 ← request randomly selected from 𝑠

2: 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ← {𝑟}
3: while size(𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑) < 𝑞 do
4: 𝑟 ′ ← request randomly selected from 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑
5: 𝐿 ← list of requests 𝑟 not in 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑
6: 𝐿 ← 𝐿 sorted by ascending 𝑅(𝑟, 𝑟 ′)
7: 𝑦 ← Random(0,1)
8: 𝑟 ← request at 𝑦𝑝 |𝐿 | position in 𝐿
9: 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ← 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ∪ {𝑟}

10: end while
11: 𝑠′ ← Remove(𝑠, 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑)
12: return 𝑠′, 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Request cost 𝑟 is defined as the difference between the total
objective with and without the pickup-delivery pair associated
with 𝑟 , denoted as Δ 𝑓 𝑟 = 𝑓 (𝑠) − 𝑓−𝑟 (𝑠). Here, 𝑠 represents the
current solution, 𝑓 denotes the objective function, and 𝑓 −𝑟 (𝑠)
signifies the objective after removing request 𝑟 from 𝑠. A larger
Δ 𝑓 𝑟 value indicates that request 𝑟 is in an unfavorable position,
suggesting a higher chance of finding an improved solution by
replacing such requests.

The Worst Removal algorithm is tailored to identify and
eliminate requests with significant Δ 𝑓 𝑟 values in each it-
eration. Algorithm 3 outlines the algorithmic details, which
share a similar approach with the Shaw Removal with Priority
algorithm. However, the key difference lies in sorting the
requests in each iteration based on descending order of request
cost.

Similar to the Shaw Removal with Priority algorithm, the
Worst Removal algorithm incorporates a randomness param-
eter denoted as 𝑝 to introduce randomness. This randomness
is crucial to prevent the algorithm from repeatedly attempting
to remove the same set of requests in consecutive iterations,
thereby ensuring effective exploration of the neighborhood
space

Algorithm 3 Worst Removal(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠, 𝑞)

1: 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ← ∅
2: while size(𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑) < 𝑞 do
3: 𝐿 ← list of request 𝑟 not in 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑
4: 𝐿 ← sort 𝐿 by descending Δ 𝑓 𝑟

5: 𝑦 ← Random(0, 1)
6: 𝑟 ← request at 𝑦𝑝 |𝐿 | position in L
7: 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ← 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ∪ {𝑟}
8: end while
9: 𝑠′ ← Remove(𝑠, 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

10: return 𝑠′, 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑

B. Insert Heuristics

This section delineates various insert heuristics, each in-
troducing a rule to determine the positions for requests to
be inserted and specifying the function Insert(𝑠′, 𝑅removed) in
Algorithm 1. These heuristics take a partial solution 𝑠′ and a
set of requests 𝑅removed as input, and output a solution with
requests reinserted.

The Simple Greedy Insert (SGI) algorithm aims to identify
the best request in terms of objective increase at each iteration.
In this algorithm, the insertion cost Δ 𝑓 𝑟𝑘 represents the

minimum objective increase resulting from including request
𝑟 in route 𝑘 . Algorithm 4 outlines the process to achieve this
objective. Initially, in lines 2-6, we calculate the costs associ-
ated with inserting each request in each route. Subsequently,
in lines 10-12, we include request 𝑟∗ with the lowest insertion
cost in the partial solution and remove it from the unprocessed
requests set. If some requests remain unprocessed, we obtain
an empty solution, indicating the algorithm’s failure to recon-
struct a feasible solution, as depicted in lines 14-18. Otherwise,
our goal is accomplished, and the resulting solution is denoted
as 𝑠′.

The SGI heuristic demonstrates limited foresight as it only
considers a single step post-insertion. This tendency often
results in ”bad” requests being neglected, leading to their
insertion with relatively high costs towards the process’s end
when options are scarce. In contrast, the Regret Insert strategy
tackles this issue by extending its evaluation to multiple
subsequent steps. Specifically, the Regret-m Insert method
analyzes m additional steps to make more informed decisions.

The regret value quantifies the challenge posed by de-
laying the insertion of a request and potentially inserting
it in subsequent iterations. The heuristic prioritizes requests
yielding the highest regret value. In case of ties, preference
is given to requests with lower insertion costs. Notably, the
SGI corresponds to the Regret-1 Insert due to its tie-breaking
mechanism.

To address requests with limited feasible insertion routes,
we set Δ 𝑓 𝑟𝑘,𝑛 = 𝑀 . This prioritizes requests with fewer
feasible insertion routes. The overall process closely resembles
that of the Simple Greedy Insert, wherein we select the request
maximizing the regret value 𝑐𝑟 , as demonstrated in Algorithm
4, line 10.

In this study, the set of insertion operators comprises Regret-
1 (Simple Greedy), Regret-2, Regret-3, Regret-4, and Regret-
|𝐾 |.

Algorithm 4 Simple Greedy Insert(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠′, 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑)

1: while 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ≠ ∅ do
2: for each request 𝑟 in 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 do
3: for each route 𝑘 in solution 𝑠 do
4: calculate Δ 𝑓 𝑟 𝑘
5: end for
6: end for
7: if no feasible insertion then
8: break
9: end if

10: 𝑟∗ ← arg min
𝑟∈𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑

(
min
𝑘∈𝐾

Δ 𝑓 𝑟 𝑘

)
11: insert request 𝑟∗ in route 𝑘 at position with minimum

objective value increase
12: remove request 𝑟∗ from 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑
13: end while
14: if 𝑅𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = ∅ then
15: return 𝑠′

16: else
17: return ∅
18: end if
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TABLE I Product parameter set.

Product Num. of
parts

Num. of
task

Num of
subassembly Subassembly profit Component weight Disassembly cost Disassembly time

Washing machine 6 13 15 106 ∼ 179 3 ∼ 33 3 ∼ 8 4 ∼ 10

comuputer 5 13 25 102 ∼ 166 6 ∼ 41 2 ∼ 7 5 ∼ 11

Radio 10 30 29 63 ∼ 162 5 ∼ 74 2 ∼ 6 4 ∼ 11

C. Acceptance Criterion from Linear Threshold Acceptance
The acceptance criterion employed in this study origi-

nates from linear Threshold Acceptance (TA), with the end
temperature set to 0. 𝑇 serves as the temperature threshold
governing acceptable objective gaps. In each iteration, an
improved neighboring solution is invariably accepted, while
a deteriorated solution is accepted if 𝑓 (𝑠′ )− 𝑓 (𝑠∗ )

𝑓 (𝑠∗ ) < 𝑇 holds
true. Initially, 𝑇 is set to 𝑇start, and it decreases at a rate of
Δ𝑇 =

𝑇start
maxIter in each iteration.

Linear TA was first introduced by Dueck and Scheuer
(1990) and has demonstrated enhanced computational effi-
ciency and the ability to yield high-quality solutions. Another
commonly employed acceptance criterion stems from sim-
ulated annealing (SA), where superior solutions are always
accepted, and deteriorated solutions are accepted with a prob-

ability of 𝑒−
𝑓 (𝑠
′ )− 𝑓 (𝑠)
𝑇 . Santini et al. (2018) have noted compa-

rable performance between both criteria when applied within
the Adaptive Large Neighborhood Search (ALNS) framework.
The selection of TA for this study was driven by (1) the
straightforward comparison of acceptance with the threshold
𝑇 , eliminating the need for random number generation and
probability computation, and (2) the direct calculation of the
cooling rate through tuning a single parameter, 𝑇start.

IV. EXPERIMENTAL STUDIES

A. Experimental Cases and Parameter Settings
To assess the accuracy of the model and the effectiveness

of the proposed algorithm, the experimental cases were solved
using IBM ILOG CPLEX Optimization Studio to obtain the
standard optimal solution. Additionally, ALNS was employed
to solve the same cases in order to compare the experimental
results. The computational experiments were carried out on a
computer with an Intel(R) Core(TM) i9-13900HX processor
running at 5.40GHz and equipped with 32.00GB of RAM.

In order to make the experimental study more compre-
hensive, three distinct product sizes were chosen: washing
machine, computer, radio. These products were combined
in different configurations to create multiple product cases
for testing.Table I provides the specific size information of
the combined cases. Regarding the work environment,three
disassembly factories and three manufacturing factories were
established, each with a maximum of five workstations on the
disassembly lines within the factories.The specific parameter
settings are shown in Table I.

B. Model Validation and Analysis
We used CPLEX to test experimental cases, and the results

are shown in Table II. In the table, ”w” represents washing

machines, ”c” represents computers, and ”r” represents ra-
dios. Taking Case 6 as an example: washing machines are
assigned to Disassembly Plants 2 and 3 for disassembly, with
components recovered by Remanufacturing Plants M1, M2,
and M3; computers are assigned to Disassembly Plant 3, with
components recovered by Manufacturing Plants 2 and 3; radios
are assigned to Disassembly Plants 1 and 2, with components
solely recovered by Manufacturing Plant 1. For instance, the
disassembly results of radio P8 show that it is assigned to
Disassembly Plant K1, with disassembled parts 9, 19, 23, 24,
and 26 subsequently transported to Remanufacturing Plant M1.
The total weight of the transported parts is 79.

In the MRPOP analysis, Case 6 involves 10 products:
3 washing machines, 3 computers, and 4 radios. The ex-
perimental results are shown in Table II and Table III. A
comparison reveals that the results from CPLEX only allocate
and transport disassembled parts based on the profit provided
by the manufacturing plants, indicating a significant weakness
in CPLEX in the comprehensive transportation process. Figure
7 shows the optimal solution obtained by re-inputting the
CPLEX output into MRPOP as the parameters required for
solving the two-stage VRPPD model. Comparing Figures 6
and 7 clearly shows that the two-stage transportation model
optimization significantly reduces delivery costs, total vehicle
distance, and the number of vehicles required compared to the
single-stage CPLEX solution. This alignment better meets the
actual efficiency requirements of a multi-factory remanufac-
turing environment.

Fig. 6. Factory distribution method for case 1.

C. Comparison with CPLEX OPL solver

To examine the performance of the proposed ALNS frame-
work to VRPPD, we generated and evaluated smaller in-
stances. The results were compared with those obtained by
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TABLE II CPLEX solutions 1

Product ID Disassembly allocation Remanufacturing allocation Component weight

P1 𝐾2 (< 2→ 𝑀2 > /< 7, 11, 12→> 𝑀3 ) 8/25

P2 𝐾3 (< 2, 3→ 𝑀2 >) 33

P3 𝐾2 (< 8, 11→ 𝑀1 > /< 2, 13, 14, 15→ 𝑀3 >) 11/22

P4 𝐾3 (< 9, 12→ 𝑀2 > /< 7, 10→ 𝑀3 >) 19/22

P5 𝐾3 (< 9, 11, 12→ 𝑀2 > /< 10, 13→ 𝑀3 >) 26/15

P6 𝐾3 (< 5, 9, 13→ 𝑀3 >) 41

P7 𝐾2 (< 2, 23→ 𝑀1 >) 74

P8 𝐾1 (< 9, 19, 23, 24, 26→ 𝑀1 >) 79

P9 𝐾1 (< 2, 23→ 𝑀1 >) 74

P10 𝐾1 (< 9, 19, 23, 24, 26→ 𝑀1 >) 79

TABLE III Experimental parameter setting

Request Task Node Demand Service Time Location

𝑆 0 0 (35, 35)

𝑅1
𝐾1 232 10 (92, 81)

𝑀1 -232 10 (44, 87)

𝑅2
𝐾2 85 10 (20, 88)

𝑀1 -85 10 (44, 87)

𝑅3
𝐾2 8 10 (20, 88)

𝑀2 -8 10 (98, 50)

𝑅4
𝐾2 47 10 (20, 88)

𝑀3 -47 10 (22, 32)

𝑅5
𝐾3 78 10 (16, 12)

𝑀2 -78 10 (98, 50)

𝑅6
𝐾3 78 10 (16, 12)

𝑀3 -78 10 (22, 32)

𝐸 0 0 (35, 35)

Fig. 7. Optimal delivery solution for case1.

CPLEX within a 60-minute time constraint. The experiments
utilized 𝑁 pairs of randomly extracted requests from the
adjusted instances, forming a smaller dataset. Experiments
were conducted for instances with 𝑁 values of 5, 10, and
15, and the results are displayed in Tables IV, V, VI.

For 𝑁 = 5, CPLEX’s computation time slightly outper-
formed ALNS, but ALNS still achieved optimal solutions
for all instances at a relatively fast speed. When 𝑁 = 10,
ALNS found superior solutions within 5 seconds for six cases,
with the best performance in case 5, where the target value
computation time was 183.116 times longer than ALNS. In
two cases, CPLEX failed to find the optimal solution within
the 60-minute time constraint. Among the cases where the
optimal solution was found, ALNS achieved speeds 145.844 to
2264.15 times faster than CPLEX. In other cases, both ALNS
and CPLEX were able to find optimal solutions, with ALNS
being faster. For 𝑁 = 15, CPLEX was only able to solve 5
cases, while ALNS found feasible solutions for all instances
without a notable increase in computation time. In case
3, CPLEX’s objective value exhibited significant differences
from ALNS, effectively demonstrating the algorithm’s supe-
riority. As ALNS yielded identical results to the successfully
found optimal objectives in all instances in OPL, we conclude
that our ALNS is robust when applied to the model proposed
in our study. Additionally, in the experiments with 𝑁 = 10
and 15, ALNS required much less time than CPLEX, and
the difference in computation time increased as the problem
size grew. We have reason to believe that ALNS has higher
computational efficiency in experiments with larger problem
sizes.

D. Verification of Algorithm With Different Scales of Cases

To evaluate the efficacy and robustness of the ALNS
framework in addressing the VRPPD problem,we conducted
experiments on all instances of size 100 from the dataset
by Li and Lim (2003). We evaluated all deletion operators
within ALNS, including Random Destructor, Worst Destructor,
and Shaw Destructor, along with various rebuilding strategies
utilizing Regret-M Rebuilder.



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING 11

TABLE IV Comparison of results between CPLEX and
ALNS N=5

Test Instance
Objective Time(s)

CPLEX ALNS CPLEX ALNS

1 196.499 196.499 0.693s 1.145s

2 265.647 265.647 0.479s 1.139s

3 211.094 211.094 0.204s 0.712s

4 275.335 275.335 0.305s 1.001s

5 518.822 518.822 0.207s 0.825s

6 356.407 356.407 0.506s 1.229s

TABLE V Comparison of results between CPLEX and
ALNS N=10

Test Instance
Objective Time(s)

CPLEX ALNS CPLEX ALNS

1 781.062 763.768 *3600s 4.158s

2 603.877 603.877 *3600s 1.59s

3 354.714 354.714 1860.5s 0.97s

4 547.470 547.470 720.47s 4.94s

5 433.965 433.965 300.31s 1.64s

6 326.235 326.235 1260.59s 3.595s

For each operator and case, we performed five independent
experiments, recording the best objective value achieved in
each trial and calculating their average. We analyzed five
distinct operator combination strategies and present the av-
erage objective values for each case in the table VII below.
Overall, different operator combination strategies exhibited
similar performance across cases. The Random Destructor
demonstrated wider exploration abilities but was prone to local
optima. The Shaw Destructor showed a tendency to converge
to better solutions more quickly, though it might be influenced
by the initial solution quality. On the other hand, the Worst
Destructor had the potential to escape local optima faster in
certain scenarios, albeit with increased computational cost.

TABLE VI Comparison of results between CPLEX and
ALNS N=15

Test Instance
Objective Time(s)

CPLEX ALNS CPLEX ALNS

1 572.504 557.224 *3600s 1.112s

2 ——— 659.206 *3600s 1.963s

3 2824.479 611.233 *3600s 5.598s

4 902.876 544.052 *3600s 4.909s

5 1053.413 986.798 *3600s 1.824s

6 1216.911 1049.695 *3600s 3.150s

V. CONCLUSIONS

The multi-factory remanufacturing processes optimization
problem is a research hotspot in the field of supply chain.
This paper proposes, for the first time, the MRPOP consid-
ering distribution services and establishes a mixed integer
programming model aiming to maximize profit to describe
this problem. We systematically decompose the problem into
two sub-problems: disassembly scheduling and transportation
route planning. Furthermore, we enhance the ALNS algorithm
to better explore optimal solutions and avoid local optima. To
validate the model’s accuracy, we utilize IBM CPLEX to solve
the model on small-scale instances and conduct algorithm
comparisons. In large-scale cases, we employ the modified
ALNS algorithm, demonstrating its efficiency.

However, several limitations warrant further discussion.
First, the model assumes static and known parameters such
as demand, disassembly task times, and transportation times.
In real-world applications, these inputs are often uncertain or
subject to dynamic changes. Inaccurate forecasts or real-time
travel delays could significantly degrade system performance.
Additionally, while the model performs well on benchmark
scenarios, its scalability and responsiveness in real-time envi-
ronments with dynamic task arrivals and disruptions remains
an open challenge.

To address these limitations, future work will explore in-
corporating stochastic elements and real-time data streams
into the modeling framework. Approaches such as robust
optimization or scenario-based planning could help mitigate
uncertainty. Moreover, applying reinforcement learning to
adapt vehicle routing policies or hybrid heuristic/metaheuristic
strategies could allow the system to respond dynamically to
changes in demand and system states. Finally, integrating
customer prioritization—based on service-level agreements or
value-based criteria—could further refine task scheduling and
delivery strategies, enhancing both efficiency and customer
satisfaction.
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