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Abstract—Traffic incidents often lead to freeway bottlenecks, 

which are major contributors to widespread traffic congestion. 

Conventional approaches for managing freeway congestion, such 

as variable speed limits (VSL) and ramp metering, are widely 

implemented. In recent times, vehicle platooning has emerged as a 

promising strategy to mitigate traffic bottlenecks. This study 

introduces an innovative framework that integrates VSL with 

vehicle platooning to address freeway bottlenecks, named VSL-VP, 

specifically designed for mixed traffic environments comprising 

both connected and autonomous vehicles (CAVs) and human-

driven vehicles (HDVs). Initially, the upstream section of a 

bottleneck is partitioned into two segments: the upstream and 

downstream portions. By imposing VSL on the upstream segment, 

the framework effectively curtails the volume of incoming traffic 

to the downstream segment. Subsequently, deep reinforcement 

learning is utilized to facilitate CAV platooning within the 

downstream segment, where reduced traffic density and increased 

following distances between vehicles create favorable conditions 

for seamless lane changes and the formation of CAV platoons. 

Simulation results indicate that the VSL-VP framework 

significantly improves bottleneck throughput and alleviates traffic 

congestion, particularly as the penetration rate of CAVs increases. 

 
Index Terms—bottleneck control method, variable speed limit, 

vehicle platooning. 

I. INTRODUCTION 

traffic bottleneck is a specific point along a road where 

traffic flow becomes restricted, occurring when the 

volume of traffic exceeds the road's capacity due to factors like 

inadequate road design, inefficient traffic signal timing, or 

traffic incidents [1]. This restriction is a primary cause of 

widespread congestion on freeways [2]. Traditional approaches 

to mitigating freeway bottlenecks include ramp metering (RM) 

[3] and variable speed limit (VSL) [4]-[6]. RM restricts vehicles 

from entering congested sections, while VSL reduces vehicle 

speeds upstream of the bottleneck to manage traffic demand. 

Although both methods are effective in preventing congestion 

caused by bottlenecks, they have limitations. RM can disrupt 

traffic on nearby roads when on-ramps are temporarily closed, 

and VSL can negatively impact traffic flow upstream of the 

bottleneck [7]. 

Given the challenges associated with traditional strategies for 

addressing freeway bottlenecks, it is essential to recognize the 

significant changes occurring in traffic patterns and 

management. The rapid development of vehicle automation and 

communication technologies is leading to an increasing 

presence of connected and automated vehicles (CAVs) in the 

automotive market [8]. In the near future, CAVs and human-

driven vehicles (HDVs) are expected to share the roads, shifting 

the traffic landscape from predominantly HDVs to a mix of 

both [9], [10]. Consequently, there is an urgent need to explore 

new strategies for controlling traffic bottlenecks in this mixed 

traffic environment [11]. 

One of the most promising strategies in intelligent 

transportation systems is vehicle platooning [12]. A vehicle 

platoon consists of a group of CAVs traveling closely together 

in the same lane, maintaining a consistent, reduced following 

distance and time gap while operating at higher speeds [13]. 

This approach holds considerable potential for increasing road 

capacity. Additionally, by reducing aerodynamic drag, vehicle 

platoons can decrease fuel consumption [14], [15]. Several 

studies have highlighted the benefits of vehicle platooning in 

alleviating traffic bottlenecks [16], [17]. The process of vehicle 

platooning involves adjacent CAVs forming a stable group 

through joining and merging maneuvers [18]. Zhao et al. 

propose a platoon formation method using model predictive 

control (MPC) to optimize the passage of platoons through 

intersections during green phases, minimizing fuel 

consumption [19]. Smith et al. demonstrate the potential of an 

MPC-based approach for vehicle platooning in urban traffic 

settings, showing improvements in urban traffic throughput 

[20]. 

As CAVs are often randomly dispersed within mixed traffic, 

several actions—such as joining, leaving, merging, and 

splitting—are necessary to organize nearby CAVs into a 

platoon. These actions can potentially have negative effects, 

including the induction of unwanted congestion [21]. However, 

current research frequently overlooks crucial decision-making 

aspects related to these maneuvers [22]. For example, there is 

limited focus on identifying the optimal joining time, which is 

the point at which a CAV should initiate lane changes and 

acceleration to integrate safely and efficiently into a platoon. 

Furthermore, as the platoon size increases, the complexity of 

the solution space grows, leading to a substantial rise in 

computational demands. Recent developments in deep 
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reinforcement learning (DRL) have demonstrated significant 

potential in addressing complex control challenges marked by 

uncertain and high-dimensional state and action spaces [23]-

[25]. Some research has started utilizing DRL for platoon 

control. For example, Li et al. introduce a multi-agent 

reinforcement learning algorithm to manage vehicle platoons 

and enhance energy efficiency during traffic fluctuations [26]. 

Another study [27] develops a DRL-based hierarchical model 

that combines platooning and coordination to improve CAV 

control, thereby reducing travel time and fuel consumption at 

intersections without traffic signals. Shi et al. [28] propose a 

distributed longitudinal control strategy for CAVs in mixed 

traffic environments using DRL, devising a new method to 

significantly mitigate traffic oscillations. However, to our 

knowledge, no existing studies have applied DRL to determine 

the optimal joining time for CAVs in mixed traffic scenarios. 

In bottleneck zones, high traffic density makes it challenging 

for vehicles to safely change lanes for platooning. Current 

research primarily concentrates on platooning in low-density 

situations [29]-[31]. To address this, this study utilizes VSL to 

support vehicle platooning. Specifically, VSL controls vehicle 

speeds to create a stretch of road with lower traffic density and 

greater following distances between vehicles. This setup allows 

CAVs to change lanes smoothly and form platoons safely and 

efficiently. To our knowledge, this is the first initiative to 

combine VSL with vehicle platooning to mitigate bottlenecks 

in extensive mixed traffic scenarios. The main contributions are 

outlined as follows: 

1) This work introduces an innovative framework that 

integrates VSL and vehicle platooning to tackle bottlenecks. 

Initially, VSL imposes speed restrictions, thereby decreasing the 

volume of traffic entering the bottleneck. The resulting lower 

traffic density and increased following distances create optimal 

conditions for CAVs to perform safe lane-changing maneuvers 

necessary for platooning. 

2) To manage the high-dimensional solution space associated 

with CAV platooning, this study uses sliding windows to divide 

large-scale traffic flows into separate segments. Within each 

segment, deep reinforcement learning (DRL) is employed to 

identify the optimal joining time for CAVs in mixed traffic 

settings. Curriculum learning is applied during model training 

[32]. The model begins by learning from simpler scenarios with 

fewer vehicles and is subsequently refined using extensive traffic 

data from various conditions, including different CAV 

penetration rates and vehicle densities. 

Furthermore, comprehensive experiments are carried out to 

demonstrate the effectiveness of the proposed framework in 

reducing bottlenecks and congestion. The study examines how 

varying window sizes affect bottleneck throughput and discusses 

the scalability of the proposed framework. 

The rest of this paper is structured as follows. Section II 

describes the problem at hand. Section III details the approach for 

integrating VSL and vehicle platooning to address freeway 

bottlenecks. Section IV outlines the experiments conducted and 

the analysis of the results. Lastly, Section V concludes the paper 

and suggests potential avenues for future research. 

II. PROBLEM DESCRIPTION AND PRELIMINARIES 

A. Problem Description 

This study focuses on a typical three-lane freeway, which is a 

prevalent configuration, featuring a bottleneck resulting from a 

lane obstruction, as illustrated in Fig. 1. The scenario includes a 

mixed traffic flow consisting of both connected and automated 

vehicles (CAVs) equipped with Vehicle-to-Vehicle (V2V) and 

Vehicle-to-Infrastructure (V2I) communication systems, and 

human-driven vehicles (HDVs) without such communication 

capabilities. Additional supporting elements include road-side 

units (RSUs) and variable speed limit (VSL) controllers. RSUs 

are equipped with devices such as traffic detectors, cameras, and 

routers to gather vehicle data and enable the transmission of 

vehicle status through V2I communication. The VSL controller 

dynamically adjusts speed limits by changing the speed-limit 

signs on a section of the freeway. The Connected Vehicle Center 

(CVC) manages all connected devices via communication 

networks. In this setting, a CAV platoon is defined as a group of 

two or more adjacent CAVs traveling in the same lane at high 

speeds, maintaining a consistent, short following distance and 

time gap. 

When a bottleneck occurs randomly in a certain area, an RSU 

collects such information and relays it to CVC. Subsequently, the 

CVC dynamically divides the upstream road of the bottleneck 

into a former road segment (S-1) for VSL implementation and a 

latter segment (S-2) for vehicle platooning in a dedicated lane, as 

illustrated in Fig. 1. 

The goal of this research is to alleviate freeway bottlenecks by 

integrating VSL with vehicle platooning. However, there are two 

significant challenges that need to be tackled: 

1) How to decrease vehicle density to facilitate platooning. 

Bottlenecks often lead to traffic congestion. When vehicle 

density is excessively high, lane-changing maneuvers become 

unfeasible at the bottleneck due to insufficient following 

distances, impeding the formation of CAV platoons. 

2) How to coordinate individual CAVs to form platoons within 

a mixed traffic environment. This entails selecting a lead CAV 

and identifying the most suitable time for other CAVs to join the 

platoon. 

B. Basic Definitions and Assumptions 

Definition 1 (CAV penetration rate). A CAV penetration 

rate pl refers to the proportion of CAVs within a road lane l 

 

Fig. 1. A bottleneck in a three-lane freeway with mixed traffic. 
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where nl,c and nl,h denote the count of CAVs and HDVs in l, 

respectively. 

Given a penetration rate, the distribution of CAVs may vary 

across different spatial areas. Platoon intensity is used to measure 

the distribution of CAVs[33] and provide the following 

mathematical definition. 

Definition 2 (Platoon intensity) [34]. A platoon intensity, 

denoted as Il, represents the ratio of the actual number of CAVs 

in platoons to the total number of CAVs in the mixed traffic flow 

within the same lane. It is calculated by 
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where k is the number of vehicles (called size) of a platoon, mk is 

the number of platoons with size k, mk2, and Z is the maximum 

size of a platoon. 

Furthermore, the following assumptions are considered: 

1) Within the communication range, the status of a CAV can be 

captured by RSUs and transmitted to the CVC. This scenario 

does not account for any communication delays or detection 

errors.  

2) Each CAV receives and precisely follows the instructions 

from the CVC, including adjustments to speed and lane-

changing actions. 

3) To maintain the safety and effectiveness of the approach, 

HDVs are restricted from entering lanes designated for CAVs, 

whereas CAVs are allowed to use any lane on S-2 to form 

platoons. It is important to note that some previous studies 

have employed dedicated lanes for CAVs [35]-[38]. This 

strategy aims to separate CAVs from mixed traffic and reduce 

the adverse impacts of erratic driving behaviors by HDVs on 

CAVs within mixed traffic flow. 

III. METHODOLOGY 

This section presents a framework that integrates VSL and 

vehicle platooning (VSL-VP) to reduce freeway bottlenecks in a 

mixed traffic setting with both CAVs and HDVs. Initially, an 

overview of the framework is provided, succeeded by the 

technical specifics, where a RL-based approach for platooning is 

introduced. The notations used throughout the subsequent 

sections are defined in Table I. 

A. Framework of VSL-VP 

A schematic representation of the proposed VSL-VP is 

depicted in Fig. 2. The framework divides the upstream road of 

the bottleneck into two distinct segments, denoted as S-1 and S-

2. Vehicle platooning occurs in S-2. In order to ensure sufficient 

car-following distance for lane-changing maneuvers to form 

platoons, VSL is adopted in S-1. As vehicles approach S-1, VSL 

controllers transmit speed limits, thereby slowing down traffic 

flow and decreasing the inflow of S-2. RSUs positioned within 

S-1 collect vehicle data and relay it to CVC. Subsequently, CVC 

calculates the CAV penetration rate and 

TABLE I 

NOTATIONS 

Notations Meaning 

pl CAV penetration rate of lane l. 

Il Platoon intensity of lane l. 

Fin Total inflow of the bottleneck. 

Fout Total outflow of the bottleneck. 

nl,c Number of CAVs in lane l. 

nl,h Number of HDVs in lane l. 

platoon intensity for each lane and chooses a dedicated lane for 

vehicle platooning. A coefficient, denoted as Dl, is defined to 

determine lane l as a dedicated lane, calculated by: 

 
1 2( )l l l lD p I b =  +     (3) 

where ω1 and ω2 represent the weights assigned to the CAV 

penetration rate and platoon intensity, respectively. Additionally, 

bl indicates whether lane l has a bottleneck: bl=0 if l is blocked, 

and otherwise, bl=1. The lane with the highest value of Dl is 

selected as a dedicated lane for CAVs to formulate platoons. 

When vehicles leave S-1 and enter S-2, speed limits are lifted, 

and vehicles begin to accelerate, thereby increasing the car-

following distance from the vehicles behind them. A large car-

following distance ensures smooth lane-changing maneuvers of 

CAVs for formulating platoons safely and efficiently. However, 

coordinating all CAVs on segment S-2 to start platooning 

simultaneously poses a challenge, and the size of the platoons 

also influences the traffic flow stability and road capacity [39]. 

Therefore, sliding-windows are employed to divide the large-

scale traffic flow into individual windows, each comprising of a 

road section containing a finite number of vehicles. CAVs within 

each window independently participate in platooning based on 

deep reinforcement learning (DRL). 

 
Fig. 2. Hierarchical framework of the VSL-VP. 
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Upon entering S-2, vehicles are separated into several windows 

according to their position and the maximum communication 

distance between two CAVs. Here, the window size represents 

the maximum number of vehicles in the window. 

In each window, the CAV nearest to the bottleneck is usually 

chosen as the leader. This leader then shifts to the designated lane. 

Subsequently, DRL is employed to identify the best time for the 

remaining CAVs to join a platoon. Windows with only one CAV 

do not need a leader. The system checks if there is another 

platoon within the communication range of this CAV. If a 

platoon is found, the CAV joins it; if not, it stays independent. 

Additional details about DRL are provided in the subsequent 

subsections. 

B. Reinforcement Learning for Platooning 

Reinforcement learning (RL) is an algorithm that describes 

how an agent takes actions to maximize expected benefits in an 

unknown environment [40]. As shown in Fig. 3, an RL process 

mainly consists of the interaction between agent G and the 

environment O. G first takes the current state s as the input and 

learns a policy to choose an action a. After a is performed, a 

reward r is obtained. Subsequently, environment O changes and 

the state is transformed into a new one s'. The agent dynamically 

interacts with the environment and updates its strategy to 

maximize the accumulated rewards [41]. This procedure is 

regarded as a Markov Decision Process (MDP), which can be 

described as a four-tuple {S, A, P, R}, where: 

S denotes a traffic state space, where sS is a specific state; 

A denotes an action space, where aA is a specific action; 

P=S×A×S denotes the transmission probability among states; 

and 

R denotes a reward space, where rR is a specific reward. 

To progressively enhance the environment towards an 

optimal state, reinforcement learning (RL) agents choose 

actions based on an optimal policy function represented by π. 

The objective of π is to maximize the cumulative expected 

rewards starting from the initial state. If agents know the 

optimal cumulative reward at a given state, they can choose 

actions that provide the maximum reward [42]. The cumulative 

reward can be determined recursively using the Bellman 

equation [43]. For example, when an agent in a particular state s 

takes an action a to transition to the next state s' and receives a 

reward r, represented as a tuple (s, a, r, s'), the cumulative reward 

denoted by Qπ(s, a) under policy π can be calculated by 

 ' '( , ) max ( ', ') | ,s aQ s a E r Q s a s a  = +    (4) 

where a'~π(s') is an action selected according to policy π at state 

s', γ is a discount factor, and a' is the best possible action. 

Deep Q-network (DQN) [44] is proposed to estimate the Qπ(s, 

a), i.e., determining the optimal time for a CAV to join a platoon. 

CAV platooning is formalized as a MDP with RL settings, which 

involves trial-error interaction with the environment, as 

illustrated in Fig. 3. The design of the state, action, transition 

probability, and reward is given next.  

 

Fig. 3. RL for vehicle platooning. 

Agent: A set of vehicles in a sliding-window is treated as an 

agent. Notice that each window conducts platooning 

independently, thus minimizing the interference among agents. 

The goal of each agent is to enhance traffic throughput at the 

bottleneck and reduce congestion. 

State: si is a state of window i, denoted by: 

 , , ,( , , , )i i l i c i h bs d d d d=  (5) 

where di,l, di,c, and di,h respectively represent the vehicle state of 

the leader, CAVs, and HDVs within window i, including their 

position, speed, and lane allocation, and db denotes the state of 

the bottleneck, including its position and the blocked lane. 

Note that the number of vehicles (up to a maximum of L) and 

CAV penetration rate in each window may vary. To ensure a 

uniform dimension of state s across different windows, windows 

with fewer than L vehicles are padded with zero vectors. The state 

information is refreshed after each time step. 

Action: At each time step t, DRL receives a state si and selects 

an action ai, which comprises the actions of all CAVs within 

window i. The size of the action ai is determined by the number 

of CAVs present. A discrete action space {ai,j} is utilized, where 

ai,j=1 signifies that CAV j within window i takes an action to join 

the platoon by changing lanes, accelerating to reach the leading 

CAV, and merging into the platoon. Conversely, ai,j=0 indicates 

that CAV j maintains its current state. 

Reward: An agent receives rewards designed to promote 

future positive actions aimed at improving the traffic throughput 

of the bottleneck. Four rewards are employed to target specific 

aspects of traffic flow dynamics within the bottleneck. 

1) The first reward, denoted as r1, is linked to traffic throughput. 

It is awarded only at the conclusion of the simulation and is 

defined as: 

 
1 in outr F F= −   (6) 

where Fin and Fout represent the total inflow and outflow of the 

bottleneck, respectively. 

2) The second reward, r2, reflects the average vehicle speed at 

the bottleneck: 

 
2r v=   (7) 

where v  represents the average vehicle speed. 

3) The third reward, r3, relates to the number of stops made by 

vehicles in the bottleneck area. To discourage prolonged traffic 

congestion before the bottleneck, a penalty term is introduced: 
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3 sr n= −  (8) 

where ns is the total number of stops made by vehicles. In the 

simulation, a vehicle traveling at a speed lower than 3 m/s is 

considered to have stopped. 

4) The fourth reward, r4, is associated with platoon density, 

which is the ratio of CAVs participating in platooning to the total 

number of CAVs in each window. A small positive value of r4 is 

assigned to windows with high platoon density at each time step 

to incentivize early platoon formation: 

 
,

4

,

i p

i c

n
r

n
=  (9) 

where ni,c and ni,p are the total number of CAVs and the number 

of CAVs participating in platooning within window i, 

respectively. 

C. DQN 

The architecture of DRL with a DQN is illustrated in Fig. 4, 

featuring two distinct tiers. The upper tier handles decision-

making processes, including neural network training and action 

refinement. Specifically, the training involves three main 

elements [44]. A Q-network with the current parameters θ plays 

a pivotal role in determining the policy governing the agent’s 

actions. A target Q-network with the previous parameters ̂  is 

employed to generate Q values crucial for the loss function 

during the training process. A replay memory serves as a storage 

system for saving and retrieving training samples. During 

 

Fig. 4. Framework for DRL with a DQN. 

training, data is randomly sampled from the replay memory. The 

parameters θ are updated multiple times per time step and are 

periodically copied to ̂  after every κ iterations. In the Q-

network, Q(s, a; θ) represents the output estimating the value 

gained by the agent taking action a in state s. Meanwhile, 
ˆ ˆ( ', '; )Q s a   represents the output of the target network. At each 

iteration ζ, the parameter θ is updated to minimize the loss 

function defined as: 

 
2

'
ˆ ˆ( ) max ( ', '; ) ( , ; )( )[ ]aL E r Q s a Q s a   = + −  (10) 

Once training is complete, the Q values produced by the Q 

network require further processing to be converted into actions, 

including the elimination of invalid actions. For instance, once a 

CAV successfully joins a platoon, it is prohibited from 

performing additional joining maneuvers.  

The low level is responsible for executing decisions. 

Following the actions determined by the upper level, RSUs 

transmit these actions to each CAV. Based on the car-following 

and lane-changing models of CAVs, these actions are converted 

into speed and acceleration commands, which the CAVs then 

carry out. 

IV. EXPERIMENTS 

This section outlines the experiments conducted on 

platooning and bottleneck control. It encompasses both the 

training and testing phases of the platooning model, as well as 

an evaluation of the VSL-VP approach in managing bottlenecks 

under varying CAV penetration rates. Additionally, the 

influence of window size on the performance of VSL-VP is 

examined. 

A. Simulation Scenario 

The simulation platform utilized is PLEXE-SUMO [45], an 

OMNeT++ framework that offers platooning f capabilities 

through the Plexe models integrated into SUMO [46]. The 

simulation scenario for the experiment is based on a segment of 

QinglanExpy, G22, located in Qingdao, China, as depicted in Fig. 

5.  

In simulation, SUMO plays a crucial role due to its provision 

of various classical car-following and lane-changing models. For 

the longitudinal movement of HDVs, the Intelligent Driver 

Model (IDM) is employed [47] because of its ability to 

realistically mimic the acceleration and deceleration patterns of 

HDVs. Meanwhile, a Cooperative Adaptive Cruise Control 

(CACC) model [48], [49] is chosen to manage the longitudinal 

motion of CAVs. Known for its cooperative and adaptive 

features, CACC is well-suited for capturing the autonomous and 

interconnected behavior of CAVs. Regarding lateral movement, 

both HDVs and CAVs are governed by SUMO's default lane 

change model LC2013 [50], which incorporates realistic 

considerations such as safety distances and traffic conditions to 

ensure an accurate representation of lateral dynamics. 

Furthermore, the detailed simulation parameters are listed in 

Table II [36]. The source codes developed for this study are 

available at https://github.com/TongLu0223/VSL-VP. 
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(a) The G22 section in Google Map 

 
(b) The G22 section in SUMO 

Fig. 5. Simulation scenario. 

TABLE II 

PARAMETER SETTING OF EXPERIMENTS 

Parameter Value 

SUMO 

Simulation time per episode (s) 6000 

Vehicle size (m) 4.8×1.8 

Simulation step (s) 0.1 

Length of S-1 (m) 3000 

Length of S-2 (m) 500 

Lane-change model LC2013 

Window size L (veh) 5 

Max window length (m) 100 

V2V communication distance (m) 100 

Maximum speed limit in S-1 (m/s) 25 

HDV 

Maximum speed (m/s) 33.33 

Desired speed (m/s) 30.55 

Maximum acceleration (m/s2) 3.5 

Minimum acceleration (m/s2) -2.8 

Car-following model IDM 

CAV 

Maximum speed (m/s) 33.33 

Maximum acceleration (m/s2) 3.5 

Minimum acceleration (m/s2) -4 

Car-following model CACC 

Model training 

Discount factor 0.95 

Learning rate 0.001 

Training batch size 256 

Memory length 20000 

Epsilon decay 0.98 

B. Results on Platooning 

Initially, the DRL-based vehicle platooning model is trained 

within an individual window located in S-2. A window size L=5 

is initialized. In this sample scenario, five vehicles, comprising 

both CAVs and HDVs, are randomly generated on the three-lane 

freeway, with a lane blocked ahead due to a traffic incident, 

creating a bottleneck. During training within a single window, the 

traffic flow remains stable, with no significant congestion. 

Therefore, only vehicle platooning is employed for control. 

When vehicles within the window enter S-2, a leader is 

designated, and subsequently, DQN determines the optimal time 

for CAVs to join the platoon. The training utilizes only rewards 

r2 and r4 only. The reward function is defined as 

 
3 2 4 4r r r =  +    (11) 

where ω3=0.9 and ω4=0.1. A higher weight is assigned to r2 since 
r2 is the most critical optimization objective. The result of 700 
episodes of training is shown in Fig. 6. It can be observed that the 
average reward gradually increases and eventually stabilizes, 
indicating a clear convergence trend. After successfully 
converging, the model controls the CAVs within the window to 
form a stable platoon before reaching the bottleneck area. A 
video of this scenario can be found at https://youtu.be/I4CYQyf-
TmE. 

Fig. 7 depicts the changes in the average vehicle speed within 
the given scenario. Vehicles traverse the bottleneck at around 30 
seconds. Due to the need for vehicles in the blocked lane to slow 
down and change lanes in advance, the average vehicle speed is 
notably reduced. The findings show that CAVs display smoother 
speed variations and attain higher speeds through the bottleneck 
compared to vehicles not utilizing platooning.  

Subsequently, curriculum learning is utilized to accelerate the 

learning process. Curriculum learning is especially advantageous 

for safety-critical tasks, such as autonomous driving, because 

beginning with a proficient model can significantly decrease the 

number of hazardous blind explorations [51]. Specifically, the 

model's training proceeds in  

 

Fig. 6. Reward in training for platooning. 

 
Fig. 7. Average vehicle speed. 
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a large-scale traffic flow with 100 vehicles entering the road per 

minute. 

To improve the model's performance in a large-scale traffic 

flow, additional reward constraints are introduced to account for 

the complexity of traffic flow dynamics. The training process 

includes various traffic scenarios with different CAV penetration 

rates. During the initial training phase, the vehicle density is set 

at 40 vehicles per kilometer. All rewards r1-r4 are taken into 

account during the training process. The agent is trained using a 

weighted sum of all rewards: 

 
5 1 6 2 7 3 8 4r r r r r   =  +  +  +    (12) 

where ω5=0.68, ω6=0.1, ω7=0.2 and ω8=0.02. The reasoning 

behind these weight values is as follows. In a large-scale traffic 

flow, the throughput of the bottleneck, represented by r1, is the 

most crucial optimization objective. Hence, it is assigned the 

highest weight. To prevent congestion and excessive jams before 

the bottleneck, rewards r2 and r3 are also given weights. Reward 

r4 encourages CAVs to form platoons as quickly as possible, thus 

speeding up the model's convergence. 

Fig. 8 presents the performance across four key metrics: 

bottleneck throughput, mean vehicle speed, mean number of 

stops, and mean platoon density at the bottleneck. It illustrates the 

convergence of each reward throughout the training process. 

Specifically, the bottleneck throughput, mean speed, and platoon 

density within the bottleneck area show a gradual increase as 

training progresses. This indicates that the model effectively 

learns to improve traffic throughput and overall system efficiency. 

In contrast, there is a significant decrease in the mean number of 

stops for vehicles, suggesting a reduction in traffic oscillations. 

The results highlight the effectiveness of the proposed method in 

optimizing traffic performance. 

C. Results on Bottleneck Control 

To verify the effectiveness of VSL-VP, the following four 

different strategies are employed for comparative experiments:  

1) a baseline entails not utilizing any additional control 

strategies for CAVs. Instead, it solely relies on the car-following 

and lane-changing models of CAVs; 

2) Only VSL is adopted on road segment S-1 to limit the speed 

of vehicles; 

 
(a) Bottleneck throughput 

 
(b) Mean speed 

(c) Mean number of stops 
 

(c) Mean platoon density 

Fig. 8. Training performance in large-scale traffic flow. 

 

3) VSL-VP without a dedicated lane; and 

4) VSL-VP with a dedicated lane.  

These are implemented on six CAV penetration rates: 0, 20%, 

40%, 60%, 80%, and 100%, respectively. The bottleneck 

throughputs are shown in Fig. 9. As the penetration rate increases, 

the throughput of all strategies rises, and VSL-VP demonstrates 

its efficacy in enhancing throughput. Specifically, at penetration 

rates of 60%, 80%, and 100%, VSL-VP has a significant 

improvement in bottleneck throughput compared with baseline 

and VSL.  

Then, the effects of the dedicated lane on the performance of 

the proposed method are analyzed. At penetration rates of 20%, 

40%, and 60%, the introduction of the dedicated lane decreases 

bottleneck throughput because a dedicated lane restricts the entry 

of HDVs although enhancing CAV platooning. As the penetration 

rate gradually increases to over 80%, CAV platoons can take full 

advantage of the dedicated lane, thereby increasing bottleneck 

throughput. The impact of the dedicated lane is dependent on the 

CAV penetration rate, which has also been confirmed by recent 

studies [37], [38]. 

The results of different metrics under six penetration rates are 

shown in Table III. At penetration rates of 20% and 40%, VSL-

VP has lower mean speed but higher mean time loss, mean stops 

per vehicle, mean stop duration, mean jam length, and max jam 

length compared to both baseline and VSL. At such penetration 

rates, a large number of HDVs are present on the road. This makes 

it hard for CAVs to form platoons. As a result, the advantages of 

CAV platoons are not realized, and the platooning process has a 

negative impact on the traffic flow, leading to a low mean speed 

and more congestion. Nevertheless, when the penetration rate 

surpasses 60%, CAVs can readily form platoons. These CAV 

platoons can leverage their benefits, swiftly navigating through 

the bottleneck. Consequently, VSL-VP achieves a higher mean 

speed and a lower mean time loss in comparison to both the 

baseline and VSL approaches. It effectively mitigates congestion, 

bringing the values of mean stops, mean stopping duration, mean 

jam length, and related metrics down to zero. Videos showcasing 

these experiments are available at 

https://www.youtube.com/playlist?list=PLzq7Vw-

HmU2fLOuS4oGOkpTEyLHkFjV8CF. 

 

Fig. 9. Performance at different CAV penetration rates. 
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TABLE III 

COMPARISON RESULTS 

Strategy 

Performance evaluations 

Throughput 
(veh/min) 

Mean speed 
(m/s) 

Mean time 
loss (s) 

Mean stops 
per vehicle 

Mean stopping 
duration (s) 

Mean jam 
length (m) 

Max jam 
length (m) 

(a) 0% CAV penetration rate 
Baseline 58 6.97 31.36 1.17 65.52 255.14 347.91 
VSL 61 12.17 24.76 0.89 49.31 231.54 308.04 
(b) 20% CAV penetration rate  
Baseline 60 6.62 31.98 1.97 60.99 226.51 287.24 
VSL 65 14.52 21.39 0.86 39.09 151.66 207.88 
VSL-VP 55 11.01 28.47 2.35 72.49 227.06 320.57 
VSL-VP with a 
dedicated lane 

47 10.38 29.83 2.56 74.61 317.87 404.61 

(c) 40% CAV penetration rate  
Baseline 66 6.11 33.27 2.24 38.01 227.64 309.81 
VSL 69 15.09 19.04 0.91 20.42 150.99 220.92 
VSL-VP 60 13.45 25.01 2.49 39.11 298.54 378.45 
VSL-VP with a 
dedicated lane 

53 10.32 29.65 2.72 43.98 301.99 398.21 

(d) 60% CAV penetration rate 
Baseline 68 6.46 32.3 3.03 17.6 154.66 246.51 
VSL 73 13.26 25.71 0.82 14.17 106.75 208.23 
VSL-VP 80 30.4 0.22 0.00 0.00 0.00 0.00 
VSL-VP with a 
dedicated lane 

77 24.99 4.78 0.45 6.35 12.48 33.27 

(e) 80% CAV penetration rate 
Baseline 69 7.43 27.1 2.88 12.67 107.95 217.86 
VSL 72 12.13 26.2 0.72 9.69 82.73 181.67 
VSL-VP 81 30.43 0.1 0.00 0.00 0.00 0.00 
VSL-VP with a 
dedicated lane 

83 32.44 -0.31 0.00 0.00 0.00 0.00 

(f) 100% CAV penetration rate 
Baseline 71 15.16 19.26 0.83 8.25 49.73 94.61 
VSL 77 23.15 4.1 0.00 0.00 0.00 0.00 
VSL-VP 82 30.55 0.00 0.00 0.00 0.00 0.00 
VSL-VP with a 
dedicated lane 

86 33.33 -0.79 0.00 0.00 0.00 0.00 

The outcomes of the experiments illustrate the efficacy of VSL-

VP in easing freeway bottlenecks. This is accomplished by 

improving the throughput at bottlenecks, minimizing traffic 

fluctuations, and decreasing congestion, especially in situations 

where the CAV penetration rate is above 60%. 

D. Window Size Test 

In this study, faced with the intricacies of large-scale traffic 

flow, sliding-windows are employed to efficiently manage the 

traffic. Specifically, a constant window size of L=5 is maintained, 

thereby setting a maximum limit of 5 vehicles for platoon size. 

The selection of platoon size is vital in shaping the behavior of 

vehicle platoons and their influence on traffic conditions [39]. Our 

experiments investigate various window sizes across six scenarios 

with differing CAV penetration rates and vehicle densities. The 

aim is to evaluate how changes in window size affect the 

performance of VSL-VP under varying conditions. The results are 

presented in Table IV. 

The effect of window size on bottleneck throughput differs 

across scenarios. In scenario 1, an initial increase in window size 

enhances bottleneck throughput. However, further enlargement of 

the window size results in a decrease. In scenario 6, as the window 

size grows, the bottleneck throughput continues to rise. This can 

be explained as follows: In scenario 1, when the window size 

initially increases, the number of CAVs within the window grows, 

promoting the formation of longer and more numerous platoons. 

As the window size expands further, longer CAV platoons may 

restrict other HDVs within the window, limiting their lane-

changing maneuvers. Moreover, with an excessive number of 

CAVs, platoons may not fully form by the time they reach the 

bottleneck, leading to a decrease in bottleneck throughput. In 

scenario 6, since the CAV penetration rate is 100%, there are no 

HDVs on the road. CAVs can form platoons more rapidly and 

securely. Thus, as the window size increases, CAVs can create 

longer platoons, enhance traffic efficiency, and thereby boost 

bottleneck throughput. However, considering other aspects, such 

as the model's time complexity, a larger window size is not always 

beneficial. 

Therefore, in each unique scenario, the optimal window size 

varies depending on factors like CAV penetration rate and vehicle 

density. The most effective approach involves dynamically 

adjusting the window size in real-time, allowing for adaptive 

responses to different traffic flows. This dynamic method of 

determining window size is a key area of focus for our future work,  
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TABLE IV 

IMPACT OF DIFFERENT WINDOW SIZE 

Scenario 
CAV 

penetration 

Vehicle 

density 

(veh/km) 

Window 

size 

Throughput 

(veh/min) 

1 60% 30 

5 67 

10 68 

15 66 

20 63 

2 60% 40 

5 80 

10 80 

15 79 

20 76 

3 80% 30 

5 68 

10 69 

15 70 

20 68 

4 80% 40 

5 81 

10 82 

15 79 

20 78 

5 100% 30 

5 70 

10 71 

15 72 

20 74 

6 100% 40 

5 82 

10 83 

15 83 

20 84 

as it has the potential to improve the performance of our vehicle 

platooning model across various traffic situations. 

V. CONCLUSION 

In this research, we introduce VSL-VP, an innovative 

framework that integrates VSL and vehicle platooning to address 

freeway bottlenecks. The approach divides the road into two 

segments preceding the bottleneck. In the first segment, VSL is 

used to decrease vehicle density and increase the following 

distance between cars in the second segment by restricting 

vehicle speeds. This creates favorable conditions for platooning. 

In the second segment, sliding-windows are initially used to 

divide the large-scale traffic flow into separate windows. Within 

each window, DQN is employed to identify the best time for 

CAVs to join a platoon, allowing them to form a stable platoon 

and navigate through the bottleneck area, thereby improving 

bottleneck throughput and reducing traffic congestion. We 

evaluate various traffic performance metrics of VSL-VP under 

different CAV penetration rate scenarios. The results show that 

VSL-VP effectively enhances bottleneck throughput and 

alleviates traffic congestion at CAV penetration rates exceeding 

60%. We also analyze the effectiveness of dedicated lanes for 

CAVs and the influence of different window sizes on bottleneck 

throughput. 

In future research, we plan to propose further optimizations to 

enhance the efficiency of VSL-VP. Specifically, the window size, 

which determines the maximum platoon size, affects bottleneck 

throughput. To refine and optimize this component of the 

framework, we will explore new methods, such as Multi-Agent 

Reinforcement Learning (MARL) [52], will be tried. Integrating 

MARL introduces a more advanced decision-making structure, 

facilitating a cooperative approach among multiple intelligent 

agents. By utilizing MARL, we aim to dynamically determine the 

optimal window size for vehicle platoons in real-time, improving 

adaptability to changing traffic conditions and boosting the 

overall efficiency and effectiveness of the VSL-VP framework in 

freeway bottleneck scenarios. 
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