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Abstract—Industry 4.0 technologies have driven traditional 

manufacturing to intelligent manufacturing. With massive 
production data, machine-learning-based methods have been 
widely used to predict and control a production process 
intelligently. They can help manufacturers achieve efficiency 
improvement and cost reduction. In this work, we present a data-
driven method to predict surplus materials in a cold rolling 
process in intelligent steel production systems. A cold-rolled steel 
coil is a common kind of steel products that is easy to generate 
surplus materials during its production. Avoiding or reducing the 
generation of surplus materials is desired for steel enterprises 
since it seriously affects their profits. However, its complex 
production processes make it difficult to identify the causes of 
surplus materials. The issue of predicting surplus material has 
not yet been well-addressed. In this work, a surplus material 
prediction problem is first proposed and solved based on a 
combination of statistical analysis and data-driven methods. We 
aim to find the key parameters that cause the generation of 
surplus material and predict whether surplus materials would be 
generated during a production process. Based on an industrial 
dataset, several machine learning methods are developed to build 
a prediction model that is able to meet actual requirements of 
steel coil production processes. The experimental results show 
that, among them, extreme gradient boosting and logistic 
regression methods are highly reliable with the best performance. 
In addition, an explicit expression obtained by logistic regression 
can provide practitioners with excellent guidance in their 
practical applications. 
 

Index Terms—surplus material prediction; industrial data 
analysis; feature selection; data-driven methods; intelligent steel 
production system 

I. INTRODUCTION 
teel manufacturing is a traditional and typical process 
industry [1, 2]. Since the development of industrial 

informatization in steel manufacturing enterprises, they have 
accumulated industrial big data. Driven by the concept of 
Industry 4.0, steel manufacturing enterprises are transforming 
from informatization to intellectualization. How to extract 
effective information from industrial big data to guide actual 
production processes is an important challenge. This work 
focuses on a surplus material prediction problem arising from 
practical steel coil production processes and presents machine 
learning-based methods to handle it. 

A cold-rolled coil is a common type of products in steel 
enterprises. For easy storage and transportation, steel sheets 
and strips are generally produced and rolled into coils. The 
production of cold-rolled coils is arranged according to their 
order weight. Typically, the weight requirement of a customer 
order is in a certain range, e.g., 8-15 tons. If a cold-rolled coil 
product cannot meet the weight requirement, e.g., weight 
unmatched or quality dissatisfactory, it would be treated as a 
surplus material. If a steel coil product is judged to be a surplus 
material, it can only be sold as spot goods whose price drops 
by 15% to 20% per ton. Moreover, if the coil cannot be sold 
even under such conditions, it has to be returned to a furnace 
as a raw material for steelmaking. This obviously increases 
production and inventory costs, reduces the profit rate of a 
company, and consumes additional energy. Thus, avoiding or 
reducing the generation of surplus materials during a 
production process of cold-rolled coils is an important issue 
that steel enterprises need to address. 

Many existing studies focus on predicting product quality 
and mechanical properties of steel coils in a cold rolling 
process. Nam et al. [3] present an on-line model based on finite 
element method to achieve a roll force profile prediction in a 
cold rolling process. Sanz-Garcia et al. [4] propose a GA-SVR 
approach for predicting temperature in a continuous annealing 
furnace. Lalam et al. [5] use artificial neural networks (ANN) 
to predict yield strength and ultimate tensile strength of coils 
in a galvanizing process. Lu et al. [6] use data-driven methods 
to analyze and predict mill vibration. The presence of surplus 
materials may be affected by the quality of semi-finished 
products in several sub-processes of a cold rolling process. 
However, no studies have been conducted on the prediction of 
surplus material generation in literature to our best knowledge. 

The new problem concerned in this work is named as a 
surplus material prediction problem (SMPP). It is to predict 
whether a steel coil is a surplus material. It means that an 
SMPP is treated as a binary classification problem. The key to 
solving this issue lies in finding the features related to the 
generation of surplus materials and controlling their related 
variables. However, hundreds of features are involved in the 
production process of cold-rolled coils, and their types are 
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multiple. Although production data for these features can be 
collected from a steel enterprise, it is still difficult to process 
them and analyze their impacts on the generation of surplus 
materials. Besides, the actual production data of steel coils are 
normally incomplete and irregular, which increases the 
difficulty in extracting valid information from them. 

In recent studies, data-driven machine learning methods 
have drawn increasing attention for solving the problems that 
cannot be modeled by explicit mathematical equations. 
Depending on the characteristics of problems, they can be 
classified as supervised and unsupervised learning ones [7]. 
The concerned SMPP as a binary classification problem can be 
addressed with the former. Extreme gradient boosting 
(XGBoost) [8] is a well-known supervised learning method 
that constructs a powerful classifier by stepwise adding 
decision trees. Besides, it can rank the importance of the 
features in its prediction model. Therefore, it is applicable to 
solve some classification problems as well as for feature 
selection. Yan et al. [9] propose a modified XGBoost method 
to predict the fatigue strength of steel. Katirci et al. [10] use 
XGBoost to predict the ZnNi alloy coating thickness and Ni % 
amount in the coating. Logistic regression (LR) [11] is an 
effective choice for solving binary classification problems, 
which aims to model the probability that a sample belongs to a 
particular category. Alatarvas et al. [12] use an LR-based 
classifier to predict inclusion state in molten steel. Besides, 
some other machine learning methods, such as support vector 
machines (SVM) [13, 14], naive Bayes (NB) [14], quadratic 
discriminant analysis (QDA) [15], k-nearest neighbor 
algorithm (KNN) [10], ANN [16], are also commonly used to 
solve prediction problems in different industrial scenarios. 

Although data-driven methods have been widely used in 
some prediction problems of steel production, few studies 
considering the whole production process of cold-rolled steel 
coils have been reported, especially on surplus material 
prediction. Previous studies on surplus material focus on 
production scheduling and optimization, which do not predict 
its occurrence. In this work, we propose a three-stage data-
driven approach to identify the core features and predict the 
generation of surplus materials depending on their actual 
production data. This work aims to make the below 
contributions: 

1) A novel surplus material prediction problem arising from 
a practical steel coil manufacturing process is first studied. 

2) A three-stage approach is proposed to solve an SMPP by 
pre-processing industrial data, conducting feature selection 

with both statistical analysis and machine learning methods, 
and predicting if surplus materials are generated. 

3) The experiments conducted on an actual industrial dataset 
show the effectiveness of the proposed three-stage approach. 
The performance of some commonly used machine learning 
methods on solving SMPPs are compared and the ones with 
superior prediction accuracy and interpretability are 
recommend to practitioners.  

The remainder of the work is organized as follows. An 
SMPP of cold-rolled coils in steel production systems is 
presented in Section II. The proposed three-stage approach for 
solving it is described in Sections III-V. Specifically, data 
cleaning and feature selection methods are described in 
Sections III and IV, respectively. XGBoost, LR, and some 
competitive prediction methods are introduced in Section V. 
The experimental results based on actual production data are 
shown in Section VI. Conclusions and future work are 
discussed in Section VII. 

II. WHAT IS THE PROBLEM? 
The general layout of a cold rolling process is shown in Fig. 

1. The incoming material is generally transformed into a 
finished cold-rolled coil product after multiple complicated 
sub-processes, such as pickling, cold rolling, annealing, 
galvanizing, finishing, cutting, and coiling. Each sub-process 
may impact the weight of a finished product that is the key to 
deciding whether surplus material is generated. The quality of 
its semi-finished products is also an important factor to surplus 
material. According to our investigations in steel enterprises, 
three main reasons for surplus material generation are 
summarized: 

1) Some varieties of cold-rolled coils, e.g., coated strips, 
need to go through an additional coating process before coiling. 
In this process, if the coating layer is not uniform or the coating 
material has poor quality, the produced coils may suffer from 
weight and quality issues. Thus, they could not meet the 
specification requirement of customer orders and have to be 
regarded as surplus materials. 

2) Finishing mill is generally equipped with a detecting 
machine that can detect defects on products at its exit. The 
defect determination results of different detecting machines 
have certain differences, which leads to different sizes of 
excised defects. If too much (or too little) portion of a coil is 
excised, its remaining weight cannot meet a customer’s order 
and has to be classified as surplus material. 

Pickling Cold Rolling Annealing Finishing Cutting Finished 
Products

Galvanizing Coating

Incoming 
Materials

 
Fig.1. The layout of a cold rolling production line. 



INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND GREEN MANUFACTURING 28 

3) The final cutting process is also an important factor. In 
some cutting units, their cutting model is relatively simple. 
Instead of cutting coils according to the defects on them, the 
separation is simply performed according to some simple rules 
such as proportion. After cutting the defective part of a cold-
rolled coil, the residual part becomes surplus material.  

According to the above description, a cold rolling process 
consists of a series of sub-processes. Each of them includes 
many process parameters (features). These features have 
different levels of influence on the generation of surplus 
material. We aim to select those essential ones and identify 
their impacts. Based on actual production data, the concerned 
SMPP is to predict if a surplus coil would appear under a 
selected set of features. We regard SMPP as a binary 
classification problem, i.e., the case that a surplus coil appears 
is true/positive, while the one that no surplus coil appears is 
false/negative. For convenience, we call the output binary 
feature (i.e., surplus coil appears or not) as the response. 

The raw data collected from a production line are often 
incomplete and irregular. They cannot be directly used to build 
a prediction model. It is essential to preprocess them before 

Original Data

Missing 
value

Duplicate 
value

Constant
value Outliers

Data cleaning

Feature selection based on statistical analysis

Categorical features Continuous features

T-testChi-square test

Univariate logistic 
regression

 Backward stepwise 
selection

Correlation analysis

Feature selection based on machine learning

XGBoost

Controllable variable selection

Building prediction models

XGBoost Logistic 
regression ...

 
Fig. 2. Flowchart for solving the concerned SMPP. 

their use. Otherwise, the performance of the prediction model 
would be poor and overfitting may occur. Such an unreliable 
model would not be acceptable in practical applications. When 
constructing a prediction model, it is also crucial to determine 
the number of features to be used. The number of features 
affects the effectiveness of the model and its applicability in 
industrial scenarios [17]. This work proposes a three-stage 
approach to deal with an SMPP, as shown in Fig. 2. At the first 
stage, data cleaning is executed to screen and condition raw 
data. Then, feature selection at the second stage is to identify 
core features that have important influences on the generation 
of surplus materials. According to different data types and 
characteristics, we use statistical analysis-based and ML-based 
methods, respectively. At the third stage, different methods are 
applied to build models for surplus material prediction based 
on the selected features. 

III. DATA CLEANING 
The dataset used in this work is collected from a cold-rolled 

coil production line of a steel enterprise located in southeastern 
China. Because of the incompleteness and irregularity of the 
raw data, cleaning is necessary to make it satisfy the 
requirements of feature selection and surplus material 
prediction. Considering the requirements for available data, 
four types of irregular data, i.e., missing, duplicate, and 
constant values as well as outliers are identified. Based on their 
characteristics, we analyze their causes in steel coil production 
and introduce corresponding treatments. 

1) Missing value 
In the production of steel coils, two scenarios may result in 

missing values: one is the loss of production records. For 
example, during a rolling process, a data acquisition module 
fails to collect rolling data at a certain moment due to sudden 
abnormality. A loss of rolling data then occurs at this point. 
The other represents that the operating state of a unit is not 
available. For example, a certain variety of steel coil does not 
need to go through a flying shear in a cold rolling process. 
Then, the corresponding record of the coil in the feature (i.e., 
the operating state of the flying shear) is missing, which means 
that the coil is not cut on the flying shear. We judge the absence 
of a feature by column. If the missing value of a feature in a 
column exceeds a preset threshold 𝜃𝜃1 , the entire column is 
deleted. 

2) Duplicate value 
Duplicate values mean that there are two or more features in 

a raw dataset whose values are the same on all samples. In this 
case, duplicate ones have the same effect on the response (i.e., 
whether a steel coil is a surplus material). Two scenarios may 
result in the generation of duplicate values. One is that two 
features have different meanings, but they take exactly equal 
values. For example, 𝑝𝑝1  and 𝑝𝑝2  are two sequential sub-
processes in a cold rolling process, and 𝑝𝑝1 precedes 𝑝𝑝2. The 
exit thickness of 𝑝𝑝1 is equal to the entrance thickness of 𝑝𝑝2. 
Although they present different meanings, their values are 
equal and have the same effect on a prediction of surplus 
material. Therefore, they are regarded as duplicate features. 
The other scenario is that the raw dataset is a combination of 
datasets from multiple sub-processes of a cold rolling process. 
A certain feature (e.g., identity information of steel coils) may 
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be contained in several datasets from these sub-processes. 
Merging these datasets leads to the duplicate features. For 
duplicated features, we retain only one of them. 

3) Constant value 
In the production of steel coils, some units operate in one 

setting mode for most of the time, and some even have only 
one constant operating mode. Hence, their corresponding 
features produce mostly constant values. Based on the 
percentage of repeated values of each feature in actual 
production data, we can obtain a distribution histogram of the 
features under different percentages, as shown in Fig. 3. Note 
that 6 features whose percentages are greater than 100% on the 
horizontal axis indicate that their percentages are equal to 
100%, i.e., their entire samples take a constant value. In 
analyzing the relationship between different features and the 
response, if the values of a feature are the same in most 
samples (i.e., the same value count exceeds a certain threshold), 
we consider that the feature has little or no effect on the 
response. In this work, we represent such threshold as 𝜃𝜃2. If 
more than 𝜃𝜃2 samples of a feature have the same value, this 
feature is deleted from the dataset. 

4) Outliers 
An outlier is a sample whose one or more features deviate 

markedly from others’ [18]. In actual production, a part of the 
raw data is manually recorded by workers, which has a high 
probability of producing incorrect ones. Besides, anomalies of 
the data acquisition system such as an overflow of a recorded 
time data can also result in an outlier. The presence of outliers 
can negatively affect the accuracy of prediction model. Thus, 
processing them is an essential part of data cleaning. In this 
work, a box plot is adopted to identify and handle outliers. Fig. 
4 is a schematic diagram of a box plot where all values of a 
feature are sorted from the smallest to largest before 
identifying outliers. The number at the 25% position after 

 
Fig. 3. Histogram of constant values distribution. 
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Fig. 4. The diagram of a box plot for identifying and correcting outliers. 

sorting is selected as the lower quartile called 𝑄𝑄1 , and the 
number at the 75% position is the upper quartile called 𝑄𝑄3. 
The difference between 𝑄𝑄3  and 𝑄𝑄1  is defined as 
interquartile range ( 𝐼𝐼𝑄𝑄𝑄𝑄 ). If a value is greater than 
Maximum = 𝑄𝑄3 + 1.5𝐼𝐼𝑄𝑄𝑄𝑄  (resp. less than Minimum = 𝑄𝑄1 −
1.5𝐼𝐼𝑄𝑄𝑄𝑄), it is treated as an outlier and modified to 𝑄𝑄3 + 3𝐼𝐼𝑄𝑄𝑄𝑄 
(resp. 𝑄𝑄1 − 3𝐼𝐼𝑄𝑄𝑄𝑄). 

IV. FEATURE SELECTION 
After data cleaning, the identified errors in the dataset can 

be effectively corrected or removed. However, the dataset 
contains a large number of redundant highly-correlated 
features whose use may degrade the accuracy of a prediction 
model. Thus, feature selection is an essential stage before 
constructing a prediction model. In this section, feature 
selection methods based on statistical analysis and machine 
learning are adopted to select core features. 

A. Statistical Analysis 

Based on statistical analysis methods, each feature is 
measured for its correlation with the response, and those 
having little or no correlation are eliminated. The statistical 
analysis methods adopted in this work are based on hypothesis 
testing. First, it is assumed that the tested feature and the 
response are independent. A probability called p-value is then 
calculated to measure their correlation. If it is less than a 
threshold, we reject the null hypothesis. In other words, we 
conclude that a relationship exists between the tested feature 
and the response. Thus, the tested feature should be kept. If the 
p-value is not less than a threshold, we cannot reject the null 
hypothesis. In other words, the tested feature and the response 
are not correlated. Thus, the tested feature is removed. We 
denote the threshold of a p-value for rejecting the null 
hypothesis by 𝜃𝜃3. 

There are two types of features contained in the dataset, i.e., 
categorical and continuous ones. Depending on different types, 
we adopt corresponding methods to implement feature 
selection, as shown in Fig. 2. Chi-square test is used to filter 
categorical features. Its statistic 𝜒𝜒2  denotes the degree of 
deviation between actual observations and theoretical 

estimates of samples, which is calculated as 𝜒𝜒2 = ∑ �𝐴𝐴−𝐴𝐴0�
2

𝐴𝐴0
. 

A and 𝐴𝐴0  represent actual observations and theoretical 
estimates, respectively. Then, a p-value corresponding to 𝜒𝜒2 
is able to determine whether a categorical feature needs to be 
removed or not.  

For continuous features, we first use t-test to evaluate the 
correlation between them and the response. In order to further 
filter irrelevant features, we adopt univariate logistic 
regression analysis and backward stepwise selection. We also 
use p-value as their metric for selecting features.  

Backward stepwise selection is a greedy feature selection 
method with high computational efficiency. It begins with a 
full model 𝑀𝑀𝑝𝑝 containing all p features in a dataset, and then 
iteratively removes the least useful one at a time, until none of 
the features is in the model (noted as 𝑀𝑀0). In each iteration, all 
the features are traversed, and the least useful one is removed 
based on the minimum residual sum of squares (RSS) principle, 
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i.e., 𝑄𝑄𝑆𝑆𝑆𝑆 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 , where n, 𝑦𝑦𝑖𝑖 , and 𝑦𝑦�𝑖𝑖 represent the 

number of samples, observed and predicted values, 
respectively. Finally, we use Akaike Information Criterion 
(𝐴𝐴𝐼𝐼𝐼𝐼 ) to select the best model 𝑀𝑀∗  among 𝑀𝑀0 , 𝑀𝑀1 ,…, and 
𝑀𝑀𝑝𝑝. It is computed as 𝐴𝐴𝐼𝐼𝐼𝐼 = 1

𝑛𝑛𝜎𝜎�2
(𝑄𝑄𝑆𝑆𝑆𝑆 + 2𝑑𝑑𝜎𝜎�2), where d and 

𝜎𝜎�2  denote the number of features and an estimate of the 
variance between the observed and predicted values, 
respectively. The subset of the features constituting 𝑀𝑀∗  is 
denoted as 𝐹𝐹∗ . The procedure of the backward stepwise 
selection method is given in Algorithm 1. 

After the above operation, the continuous features correlated 
with the response are retained. However, there may be 
collinearity among them, i.e., certain features have a similar 
effect on the prediction. In order to eliminate the collinearity 
between two features, a correlation analysis based on Pearson 
correlation coefficient is performed. The Pearson correlation 
coefficient between two features is calculated as:  

𝑟𝑟𝑥𝑥𝑥𝑥 =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
 (1) 

where n denotes the number of samples, x and y denote two 
features, �̅�𝑥 and 𝑦𝑦� are their mean values. If the absolute value 
of 𝑟𝑟𝑥𝑥𝑥𝑥  between x and y is greater than a given threshold 𝜃𝜃4, 
they are considered to be correlated. Then, one of them is 
randomly removed from the feature set. 

Algorithm 1: Backward stepwise selection 
Input: p features to be selected and the response for 
modeling 
Output: the features subset 𝐹𝐹∗ constituting model 𝑀𝑀∗ 
1 Let all p features constitute a set 𝐹𝐹𝑝𝑝, and construct a 

model 𝑀𝑀𝑝𝑝 that contains all these features; 
2 for i = p to 1 
3   for j =1 to i 
4     Remove the jth feature from 𝐹𝐹𝑖𝑖, and the 

resulting set is denoted as 𝑓𝑓𝑖𝑖/𝑗𝑗; 
5     Construct a model 𝑚𝑚𝑖𝑖/𝑗𝑗  using 𝑓𝑓𝑖𝑖/𝑗𝑗  and 

the response; 
6     Calculate its 𝑄𝑄𝑆𝑆𝑆𝑆 by formula (2); 
7   Select the one with the minimum 𝑄𝑄𝑆𝑆𝑆𝑆  among 

𝑚𝑚𝑖𝑖/𝑗𝑗 , which denotes as 𝑀𝑀𝑖𝑖−1 , and its 
corresponding features set is 𝐹𝐹𝑖𝑖−1; 

8 for k = 0 to p 
9   Calculate the 𝐴𝐴𝐼𝐼𝐼𝐼  value of 𝑀𝑀𝑘𝑘  using formula 

(3); 
10   The model with minimum 𝐴𝐴𝐼𝐼𝐼𝐼 is selected and 

denoted as 𝑀𝑀∗, and its corresponding features 
set is denoted as 𝐹𝐹∗; 

11 return 𝐹𝐹∗; 

B. Machine Learning 

After feature selection using a series of statistical analysis-
based methods, XGBoost [8] is employed to further filter 
unimportant features. It is a kind of supervised learning 
algorithms based on gradient tree boosting algorithm. 
XGBoost has a great attribute that it can rank the importance 
of features according to their information gains. We exploit it 

to realize feature selection. Considering both prediction 
accuracy and overfitting, XGBoost adopts the following 
objective function:  

𝑧𝑧(𝑡𝑡) = �𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡)�

𝑛𝑛

𝑖𝑖=1

+ �Ω(𝑓𝑓𝑖𝑖)
𝑡𝑡

𝑖𝑖=1

 

= �𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�

𝑛𝑛

𝑖𝑖=1

+ Ω(𝑓𝑓𝑡𝑡) + �𝛺𝛺(𝑓𝑓𝑖𝑖)
𝑡𝑡−1

𝑖𝑖=1

 

(2) 

where n is the number of samples, 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡)� denotes a loss 

function, 𝑦𝑦�𝑖𝑖
(𝑡𝑡) is the predicted value of sample i at the t-th 

iteration, Ω(∙) denotes a regularization term, 𝑓𝑓𝑡𝑡 is the tree to 
be trained at the t-th iteration. In order to evaluate the loss 
function effectively, the second-order Taylor expansion is used 
to approximate the original objective function in (5): 

𝑧𝑧(𝑡𝑡) = �[𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)� + 𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +

1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡

2(𝑥𝑥𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

+ Ω(𝑓𝑓𝑡𝑡) + �Ω(𝑓𝑓𝑖𝑖)
𝑡𝑡−1

𝑖𝑖=1

 

(3) 

where the first and second-order gradient of the loss function 
are respectively defined as 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑥𝑥�𝑖𝑖

(𝑡𝑡−1)𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)�  and 

ℎ𝑖𝑖 = 𝜕𝜕
𝑥𝑥�𝑖𝑖

(𝑡𝑡−1)
2 𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖

(𝑡𝑡−1)�. 

The regularization term Ω(𝑓𝑓𝑡𝑡) is determined by the number 
of leaf nodes 𝛤𝛤 and the L2 norm of the weight of each leaf 
node 𝜔𝜔𝑗𝑗2 , i.e., Ω(𝑓𝑓𝑡𝑡) = 𝛾𝛾𝛤𝛤 + 1

2
𝜆𝜆 ∑ 𝜔𝜔𝑗𝑗2𝛤𝛤

𝑗𝑗=1 . Its usage can 
prevent the decision tree from splitting out too many nodes to 
result in overfitting. 

An XGBoost model can output an importance order of the 
features according to their information gains. The top 20 
features with the largest information gains are selected. 
However, it should be noted that some of these features are not 
controllable, i.e., their values cannot be tuned during a 
production process, such as material index. Guided by a 
prediction model, our goal is to reduce the generation of 
surplus material by controlling key features in the production 
process of cold-rolled coils. Thus, we only retain the 
controllable ones out of the selected 20 features to build an 
interpretable prediction model. 

V. INTELLIGENT SURPLUS MATERIAL PREDICTION 

A. Extreme Gradient Boosting (XGBoost) Method 

As a decision tree-based classification method, XGBoost 
can naturally be used for the second time to build a classifier 
after feature selection. At its training stage, it stepwise adds a 
decision tree to its prediction model to improve the prediction 
performance. After training, the structure of the trained model 
and the corresponding weights of trees in it are determined. 
The final prediction result of an XGBoost model is the sum of 
each decision tree’s weight in it, which is calculated via (6). 

Before constructing an XGBoost classifier, some key 
parameters for a boosting tree model should be determined, 
such as the learning rate 𝜂𝜂 , the minimum loss reduction 
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required for a partition on a leaf node of tree 𝜀𝜀, the maximum 
depth of a tree 𝛼𝛼, the minimum sum of sample weights needed 
in a child 𝛽𝛽, the maximum delta step of each leaf output 𝛿𝛿, 
the subsample ratio of samples 𝜁𝜁, and the subsample ratio of 
features 𝜇𝜇 when constructing each tree. 

B. Logistic Regression (LR) Method 

Although XGBoost usually has high prediction accuracy, it 
is a black-box algorithm that only provides prediction results 
based on given samples and features. Its unknown functional 
relationship cannot enable practitioners to adjust strategies to 
reduce the generation of surplus materials in practical 
applications. To overcome this drawback, LR [11] introduced 
in this section aims to build a prediction model with a 
recognizable regression function. It is a popular choice for 
classification because of its simplistic formulation and 
interpretable model structure [12]. Its explicit expression can 
clearly show the quantitative relationship between input 
features and response. In LR, the probability of a steel coil to 
be judged as a surplus material is calculated as follows: 

𝑞𝑞(𝑥𝑥) = 𝜔𝜔T𝑥𝑥 + 𝑏𝑏 (4) 

𝑔𝑔(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
 (5) 

ℎ𝜔𝜔(𝑥𝑥) = 𝑔𝑔�𝑞𝑞(𝑥𝑥)� =
1

1 + 𝑒𝑒−𝜔𝜔T𝑥𝑥−𝑏𝑏
 (6) 

𝑌𝑌 = �1 ℎ𝜔𝜔(𝑥𝑥) ≥ 𝜃𝜃𝐿𝐿
0 ℎ𝜔𝜔(𝑥𝑥) < 𝜃𝜃𝐿𝐿

 (7) 

where 𝑞𝑞(𝑥𝑥) is a linear regression model, 𝜔𝜔 and 𝑏𝑏 are its 
weight and intercept coefficients to be trained. A logistic 
function 𝑔𝑔(𝑧𝑧)  in (11) is chosen as an activation function. 
After the manipulation of (10) and (11), we obtain the 
probability ℎ𝜔𝜔(𝑥𝑥) for prediction. The predicted value Y in (13) 
is a logical one. If ℎ𝜔𝜔(𝑥𝑥) is greater than a given threshold 𝜃𝜃𝐿𝐿, 
Y is considered as being true (coded as 1). Otherwise, it is 
considered as being false (coded as 0). 

C. Methods for Comparison 

SVM is an algorithm that maps data to points in a high-
dimensional space [19]. It constructs a classifier by finding an 
appropriate hyperplane and support vectors. By selecting 
various kernel functions, it can handle the classification of 
different linear and nonlinear data. In this work, we select two 
kinds of kernel functions for modeling, i.e., polynomial and 
radial basis kernel functions. The general forms of their kernel 
functions are 𝐾𝐾𝑝𝑝(𝑥𝑥, 𝑦𝑦) = (𝛾𝛾𝑥𝑥T𝑦𝑦 + 𝑐𝑐)𝑑𝑑  and 𝐾𝐾𝑟𝑟(𝑥𝑥, 𝑦𝑦) =
𝑒𝑒𝑥𝑥𝑝𝑝(𝛾𝛾‖𝑥𝑥 − 𝑦𝑦‖)2 , where x and y are two samples, c is a 
constant, d denotes the power exponent of the polynomial, and 
𝛾𝛾 is a penalty coefficient. 

Two competitive methods based on Bayes’ theorem, i.e., 
NB and QDA are adopted to solve SMPP. By calculating the 
posterior probability that the category of a given sample is 0 or 
1, they can classify the sample into the category with the 
highest posterior probability value. NB assumes that features 
are independent. It performs classification by learning a joint 

probability distribution from input to output on a training set. 
QDA assumes that the samples of each class follow a Gaussian 
distribution, and each class has its unique covariance matrix. 
As with LR, when constructing classifiers using these methods, 
it is necessary to decide their threshold parameters. In this 
work, we denote them as 𝜃𝜃𝑁𝑁 and 𝜃𝜃𝑄𝑄, respectively.  

KNN algorithm aims to find a neighborhood of k closest 
samples to a test sample in a training set and label it as the class 
that most of the samples in this neighborhood belong to. Two 
key parameters have great impact on its effectiveness, i.e., 
distance metric among samples and the number of nearest 
neighbors k. In this work, Euclidean distance is used to 
measure the k nearest neighbors.  

ANN is a widely used type of algorithm because of its high 
accuracy in various classification problems. However, 
complicated network structures may cause overfitting and low 
generalization ability. In this work, we select a multilayer 
perceptron (MLP) as a representative of ANN, which is a fully 
connected feedforward network. It is among the most 
commonly used network structure [20]. A standard error 
backpropagation function is selected as the learning function 
of MLP in training. In it, we need to determine two parameters, 
i.e., the number of units in hidden layer 𝑠𝑠𝑀𝑀, and learning rate 
𝑟𝑟𝑀𝑀. 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we first present the design details of our 

experiments. Then, our proposed three-stage approach is 
implemented on an efficient computational platform. Finally, 
experimental results are compared and analyzed. 

A. Experimental Settings 

The raw data are collected from a cold rolling production 
line of a steel plant. It contains three months of actual 
production data, with a total of 9670 samples with 832 input 
features and a response. Among them, 4487 samples are 
marked as true and 5183 as false.  

TABLE I 
A SUMMARY OF THE R LIBRARIES USED IN THIS WORK 

Step Method Library 

Statistical analysis-
based feature selection 

Chi-square test stats 

T-test stats 
Univariate logistic regression 

analysis stats 

Backward stepwise selection stats 

Correlation analysis stats 
Machine learning-based 

feature selection XGBoost xgboost 

Building prediction 
models 

XGBoost xgboost 

LR stats 

SVM e1071 

QDA MASS 

KNN class 

NB e1071 

MLP RSNNS 
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TABLE II 
THRESHOLD SETTINGS 

Parameter 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 𝜃𝜃4 

Value 97% 100% 0.05 0.8 

After data cleaning, the experimental data are divided into 
training and test sets with a ratio of 7: 3. All the experiments 
are implemented in R programming language. The methods 
used in this work are implemented by using R libraries as 
shown in Table I. In addition, the threshold settings based on 
expert experience and some previous work [7] are summarized 
in Table II. 

For other prediction methods introduced in Section V, we 
tune their optimal hyperparameters on a training set to get 
competitive competitors. Since each method contains many 
hyperparameters, we only concentrate on determining the 
values of the hyperparameters that have important impacts on 
the prediction results according to experience [6]. We adopt a 
grid search method to select a suitable value, and its results are 
summarized in Table III. The rest of the parameters are set to 
default values of corresponding functions given in R libraries. 
Note that four values of parameter 𝑚𝑚𝑠𝑠 correspond to the same 
solution. Note that 𝑚𝑚𝑠𝑠 may help in classification when classes 
are extremely imbalanced. In this work, our positive and 
negative samples are approximately balanced. 

B. Performance Metrics 

In order to evaluate the performance of the selected 
classifiers comprehensively, we use confusion matrix and five 
evaluation metrics, i.e., sensitivity, specificity, accuracy 
(ACC), F-measure, and AUC. Confusion matrix can describe 
the results of a binary classifier by using four values in Table 
IV. According to it, the other four metrics can be directly 
calculated as sensitivity = TP/(TP + FN) , specificity =
TN/(TN + FP) , ACC = (TP + TN)/(TP + TN + FP + FN) , 
and F-measure = 2 × TP/(2 × TP + FP + FN) . AUC (i.e., 
area under the curve of ROC) is also a valid numerical metric. 
It calculates the area under the ROC curve that intersects with 
the horizontal and vertical axes. All of these five metrics are 
the higher, the better.  

C. Results and Comparative Analysis 

According to the implementation of the proposed three-
stage approach illustrated in Fig. 2, data cleaning and feature 
selection are first performed. The numbers of features after 
each step are shown in Table V. It can be seen that 680 of 832 
features except for the response are retained after data cleaning. 
These 680 features are composed of 272 continuous and 408 
categorical ones. Then statistical-analysis-based methods 
introduced in Section IV.A are performed to select these two 
types of features separately. First, 105 categorical features are 
removed by Chi-square test. Then, 2 and 80 redundant 
continuous features are eliminated by t-test and univariate 
logistic regression analysis, respectively. Next, backward 
stepwise selection is executed on the remaining continuous 
features. We find that with the number of features iteratively 
decreasing, the 𝐴𝐴𝐼𝐼𝐼𝐼  value keeps decreasing. When the 𝐴𝐴𝐼𝐼𝐼𝐼 
value is no longer decreasing, the backward stepwise selection 
algorithm terminates and returns the remaining features. The 

TABLE III 
HYPERPARAMETERS THAT ARE TUNED BY GRID SEARCH 

METHOD 

Method Hyper-
parameter Range Selected 

value 

XGBoost 

𝜂𝜂 {0.1, 0.2, 0.3, 0.4, 0.5} 0.5 

𝜀𝜀 {0, 1, 2, 3, 4} 0 

𝛼𝛼 {4, 5, 6, 7, 8} 7 

𝛽𝛽 {1, 2, 3, 4, 5} 3 

𝛿𝛿 {0, 1, 2, 3, 4} 0, 2, 3, 4 

𝜁𝜁 {0.25, 0.5, 0.75, 1} 1 

𝜇𝜇 {0.25, 0.5, 0.75, 1} 0.75 

LR 𝜃𝜃𝐿𝐿 
{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 

0.7} 0.5 

SVM 
(polynomial 

kernel) 
cost {0.001, 0.01, 0.1, 1, 10, 100, 

1000} 1 

SVM (radial 
kernel) cost {0.001, 0.01, 0.1, 1, 10, 100, 

1000} 1 

QDA 𝜃𝜃𝑄𝑄 {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 
0.7} 0.65 

KNN k {1, 2, 3, 5, 10, 20} 1 

NB 𝜃𝜃𝑁𝑁 {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 
0.7} 0.65 

MLP 
𝑠𝑠𝑀𝑀 {3, 4, 5, 6, 7} 5 

𝑟𝑟𝑀𝑀 {0.05, 0.10, 0.15, 0.2, 0.25, 
0.3} 0.25 

TABLE IV 
BINARY CLASSIFICATION CONFUSION MATRIX 

 Predicted true Predicted false 

Actual true TP FN 

Actual false FP TN 

selection result using the 𝐴𝐴𝐼𝐼𝐼𝐼 criterion is listed in Table VI. It 
can be seen that the model with 72 continuous features has the 
minimum 𝐴𝐴𝐼𝐼𝐼𝐼 value and is selected. After backward stepwise 
selection, 375 features are kept. Finally, 45 features are 
removed by correlation analysis. The relationship among 
continuous features before and after a correlation analysis can 
be visualized in the heatmaps, as shown in Fig. 5. 

The shades of color are used in heatmaps to indicate the 
strength of correlation among features. A dark (resp. light) 
color represents a strong (resp. weak) correlation. It can be 
seen from Fig. 5(a) that there are many strongly correlated ones 
among the 72 features before correlation analysis. After that, 
the remaining 27 features are strongly correlated with 
themselves (i.e., the elements on the diagonal in Fig. 5(b) have 
the darkest color). It proves that correlation analysis effectively 
solves the collinearity problem among continuous features. 

After feature selection based on statistical analysis methods, 
330 features are retained, including 27 continuous and 303 
categorical ones. In the procedure of machine learning-based 
feature selection, we take the 330 retained features as the 
inputs to XGBoost. According to the ranking of feature 
importance in descending order, the top 20 ones are chosen. 
Moreover, 10 of the top 20 ones are controllable, which are 
applied to train our classifiers.  

XGBoost, LR, and their competitors are compared by using 
their trained models and their performance on the test set is 
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shown in Table VII. It shows that XGBoost has the best 
performance on specificity and three other metrics. LR has the 
best performance on sensitivity. We consider the five metrics 
together and identify that XGBoost and LR have better 
performance than the other methods. Their five evaluation 
metrics are high enough (all over 95%), which proves that they 
are ready to be employed in practice. Although XGBoost 
performs better than LR on specificity, ACC, F-measure, and 
AUC, LR has better sensitivity than XGBoost. 

TABLE V 
NUMBER OF FEATURES IN EACH STEP 

Step 

Number of 
features 

(except for the 
response) 

 Original data 833 

Data 
cleaning 

Missing value cleaning 830 

Duplicate value cleaning 686 

Constant value cleaning 680 

Outliers correction 680 

Statistical 
analysis 

Chi-square test 575 

T-test 573 

Univariate logistic regression analysis 493 

Backward stepwise selection 375 

Pearson correlation analysis 330 

Machine 
learning 

XGBoost feature selection 20 

Controllable feature selection 10 

TABLE VI 
THE RESULT OF BACKWARD STEPWISE SELECTION 

Backward stepwise 
selection 𝐴𝐴𝐼𝐼𝐼𝐼  value Number of continuous 

features 
Start -29510.2 190 

End -29665.5 72 

 
(a) 

 
(b) 

Fig. 5. The heatmaps of different feature counts before and after correlation 
analysis. 

 

TABLE VII 
COMPARISON OF THE PROPOSED PREDICTION METHODS 

Prediction method Confusion 
matrix Sensitivity Specificity ACC F-measure AUC 

XGBoost 1288 58 0.9509 0.9788 0.9686 0.9659 0.993 33 1521 

Logistic Regression 1281 49 0.9632 0.9586 0.9607 0.9574 0.960 65 1505 
SVM 

(polynomial kernel) 
1263 83 0.9383 0.9704 0.9555 0.9514 0.954 46 1508 

SVM 
(radial kernel) 

1268 78 0.9421 0.9736 0.9590 0.9552 0.958 41 1513 

KNN 1148 198 0.8529 0.8945 0.8752 0.8638 0.874 164 1390 

QDA 1248 98 0.9272 0.9646 0.9472 0.9422 0.946 55 1499 

NB 1226 120 0.9108 0.9537 0.9338 0.9274 0.932 72 1482 

MLP 1272 74 0.9450 0.9717 0.9593 0.9557 0.958 44 1511 
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Among these methods, LR, QDA, and NB are probability-
based ones for classification. Their comparative results in 
Table VII show that LR outperforms the other two methods. 
LR as a strong contender is not only able to provide high 
prediction performance but can also obtain an explicit 
expression as follows: 

𝑞𝑞(𝑥𝑥) = 20.48 − 59.51𝑥𝑥24 − 0.03405𝑥𝑥730 −
0.5055𝑥𝑥728 + 1.014𝑥𝑥104 + 0.9331𝑥𝑥53 −
0.053𝑥𝑥107 + 0.001𝑥𝑥361 − 24.26𝑥𝑥717 +

0.004𝑥𝑥176 + 0.0006𝑥𝑥167  

(8) 

The coefficients of the 10 input variables are visible. Their 
values indicate the importance of their corresponding variables 
in an LR model. Thus, practitioners can adjust the production 
parameters according to an LR model. It is extremely helpful 
to achieve the goal of reducing or even avoiding the generation 
of surplus material. Therefore, with its performance similar to 
an XGBoost model’s, we consider an LR model to be a better 
one in practical applications due to its excellent interpretability 
while the latter cannot be interpreted. 

VII. CONCLUDING REMARKS 
This work investigates SMPP arising from a cold rolling 

process of steel coils. Taking a set of actual production data as 
an instance, we propose a three-stage approach to analyze and 
predict the generation of surplus material. The experimental 
results show that XGBoost and LR have greater performance 
than other popular competitors. Their results on five evaluation 
metrics are all greater than 95%, which proves their validity of 
prediction and the possibility of practical applications. The 
intelligent models obtained by the proposed method can be 
used in intelligent manufacturing processes to predict the 
generation of surplus materials, effectively reducing or 
replacing manual recognition. Besides, the LR model gives an 
explicit expression that can assist practitioners in adjusting 
process parameters to reduce the generation of surplus material.  

Although the LR model gives a functional relationship 
between the selected features and the response, grid search 
used in this work only guarantees to find a good setting of 
hyperparameters. Finding the optimal hyperparameters that 
result in the fewest surplus materials is an optimization 
problem, which can be solved by intelligent optimization 
algorithms as our future work. Since the proposed method is 
highly extensible, it is capable of solving other prediction 
problems in most parts of the entire steel intelligent 
manufacturing processes such as casting, hot rolling, etc. 
Besides, other industrial applications such as SMPPs for hot-
rolled slabs and wire rod products should be sought. 
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